

RDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester/Re-exam - January/February 2025

Program: B.Tech Civil Engineering (Working Professional) Duration: 3 Hours Sexu III

Course Code: PC-BTC301

Maximum Points: 100

Course Name: Mechanics of materials

Semester: III

Notes:

13/1125

- Attempt any 5 main questions
- Draw neat sketches to support your answers
- Assume suitable data if missing and state the same clearly.

Q.No.	Questions	Points	со	BL	Module
1. a)	Explain and sketch the stress strain curve obtained for duetile materials under tensile test. Mark and define the following points: Elastic limit, Yield stress, Ultimate stress, Modulus of elasticity.	10	02	02	01
1.b)	Analyze the axial stresses in the bar of varying cross section as shown below and obtain the total change in length	10	02	03	01

	$\begin{array}{ll} \textbf{Diameter} = 32 \text{mm} & \textbf{Cross sec} \\ \textbf{L} = 300 \text{mm} & \textbf{L} = 200 \text{m} \end{array}$	The state of the s	Diameter = 20mm L = 250mm		
2.a)	A bar with rectangular cross section is su axial pull of 150kN along its length. If it 2m long, 30mm wide and 20mm thick, following values: a) Change in length b) Change in width c) Change in thickness d) Modulus of rigidty and bulk modulus Take E=200GPa and Poisson's ratio = 0.3	evaluate the	02	03	01
2.b)	A rod of steel 1m in length at a tempera Find: i)the free expansion/contraction		02	03	01

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

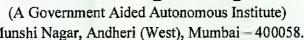
End Semester/Re-exam – January/February 2025

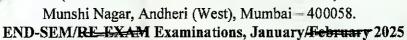
	temperature is raised to 110°C; ii)stress in bar if no expansion is allowed and iii)stress when an expansion of 0.5 mm is allowed.				
	Take $\alpha = 12 \times 10^{-6}$ /° C, E = 2×10^{5} N/mm ² .				
3	Draw the SFD and BMD for the beam shown in fig. below. Also obtain maximum bending moment and its point of action.	20	01	03	02
	Bokn lookn		SOKN		
	20kN/m		JOKN		

	8.5	kh lm	BOKN		look	<i>,</i> N		SOKN	
*30333555						a karifelyan mayana mana garan 3 (ab) Wayanana ma	- 4	40 F	H-en
.क्रिक 	2 m	lm lm		Im		tm —	ım —		
A		В	c		D	<u>.</u>		E	

4.a)	A 150 x 400 mm timber beam is strengthened by the addition of 100 x 4 mm steel plates secured at its top and bottom surfaces. The flitched beam is simply supported and carries a uniformly distributed load of 30kN/m over an effective span of 10m. analyse the following: i)Bending stresses in timber beam before strengthening ii)Bending stresses in timber and steel plates after strengthening Take Es = $2 \times 10^5 \text{N/mm}^2$ and $E_T = 1 \times 10^4 \text{ N/mm}^2$.	10	02	03	03
4.b)	A cylindrical vessel, whose ends are closed by means of rigid flange plates, is made up of steel plate 6 mm thick. The length and internal diameter of the vessel are 70 cm and 35 cm respectively. Determine the longitudinal and hoop stresses in the cylindrical shell due to an internal fluid pressure of 1.5MPa. Also calculate the increase in length, diameter and volume of vessel. Take E = 2×105 MPa and μ=0.3	10	03	03	07
5.a)	A plane element is subjected to the stresses as shown in the figure below. Determine analytically: i) The principal stresses and their directions ii) The maximum shearing stresses iii) Normal and shearing stresses on the inclined plane P-P	10	02	03	06

SARDAR PATEL COLLEGE OF ENGINEERING




(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-exam – January/February 2025

	25 60 MPa 10 MPa 30 MPa				
5.b)	Solve Q 5.a) graphically using Mohr's circle	10	02	03	06
6.a)	An I beam having flanges as (250x10)mm and web as (8x350) mm is used as a simply supported beam over 5m span and carries a UDL of 10kN/m. Calculate the shear stresses induced at support section and sketch its variation along the depth.	10	01,	03	04
6.b)	Obtain the shear centre for a channel section having flanges = 150x12mm and web = 250x10mm. The section is subjected to a shear force of 30kN. Sketch the variation of shear flow across the section.	10	04	03	04
7.a)	The maximum shear stress developed on the surface of a solid circular shaft subjected to torsion is 150MPa. Analyse the maximum shear stress that will develop if the diameter of shaft is increased by 50%.	05	02	03	05
7.b)	A solid shaft has to carry a torque of 15 kNm. Find a suitable diameter for the shaft if the maximum stress is limited to 100 MPa and the angle of twist should not be more than 20 degrees per metre length. G = 85 GPa. If this solid shaft is to be replaced by a hollow shaft of same material, equal length and same allowable shear stress, having external diameter equal to 1.3 times the internal diameter, find the cross section dimensions of the hollow shaft.	10	02	03	05
7.c)	Define torsion. State the assumptions in theory of torsion. Explain the terms in torsion equation with neat sketch	05	02	02	05

Sardar Patel College of Engineering

Total points: 100 S, Y CC) Sem III

Duration: Total Time allotted will be 3Hr. Total points: 100

Class: B.TECH (Civil Engineering) [Working Professional]. Semester II]

Program: CIVIL

Name of the Course: Basics of Surveying Course Code: PC-BTC303

Instructions:

All Questions are compulsory. 1.

Assume suitable data if necessary and state the clearly. 2.

15/11/25

Que.								Points	CO	BL	Module
10											no
21	A. The f	followin	g observ	ations were	made usin	g tachometer	fitted with	10	1,2	3	4
	analla	atic lens,	, the mult	tiplying con	stants being	100.					
	Instrument	Ш	Staff	WCB	Vertical	Hair	Remarks				
	station		station		angle	readings					
	0	1.550	A	30°30′0"	4030'0"	1.155,	RL of				
			ĺ			1.755,2.355	0=				
			В	75°30′0″	10015'0"	1.250,	150.000				
				73 30 0	10 13 0	2.000,	100000				
Ì		}				2.750					
		L	l			2.730					
	AB.	distanc	1	+==							
	AB.		N. A.	Th. V2							
			A-02-		30°30' 75°30'	(b)	⇒ B				
			A-02-		30,30,	(b)	⇒ B				
			A-0 ₂ -		30,30,	(b)	= B				

	Instrume station	nt Staff reading on	Distance(m)	Stadia read	lings				•
				Lower	Upper				
	O	A	150	1.255	2.750				
		В	200	1.000	3.000		1		
		C	250	0.750	3.255				
	<u> </u>			1 21/22					
Q 2	B. What are in between	he process of met fundamental line them. plete traverse tabl	s of theodolite a	nd what sho		05 05	2 1 2,4	2 1 3	3 3
	Line	Length	(m)	Bearing					
	AB	100	·/	??					
	BC	80.5			0030'0"				
	CD	60			0030'0"				
			· · · · · · · · · · · · · · · · · · ·						1
	DA	??		310	0015'0"				
Q 3	boundary	wing offsets wer line at an interval		chain line	to an irregular	08	1,3	2	5
Q 3	boundary 0, 2.50, 3.50, 5.00 Compute the area offsets by 1) The mid-offsets 2) The avera	line at an interval 0, 4.60,3.20, 0 m a between the cha ordinate rule ge-ordinate rule	of 10 m:			08	1,3	2	5
Q 3	boundary 0, 2.50, 3.50, 5.00 Compute the area offsets by 1) The mid-c 2) The avera 3) The Trape 4) Simpsons	line at an interval 0, 4.60,3.20, 0 m a between the char ordinate rule ge-ordinate rule ezoidal rule rule	of 10 m:						
Q 3	boundary 0, 2.50, 3.50, 5.00 Compute the area offsets by 1) The mid-of 2) The avera 3) The Trape 4) Simpsons B. What is T Explain w	line at an interval 0, 4.60,3.20, 0 m a between the cha ordinate rule ge-ordinate rule ezoidal rule	of 10 m: ain line, the irreg	gular bounda	ary line and the	08	2,3	2	5
Q 3	boundary 0, 2.50, 3.50, 5.00 Compute the area offsets by 1) The mid-c 2) The avera 3) The Trape 4) Simpsons B. What is T Explain w plane table	line at an interval 0, 4.60,3.20, 0 m a between the char ordinate rule ge-ordinate rule ezoidal rule rule wo-point problen with a neat sketch	of 10 m: ain line, the irreg n? procedure of solv	gular bounda	ary line and the				
	boundary 0, 2.50, 3.50, 5.00 Compute the area offsets by 1) The mid-c 2) The avera 3) The Trape 4) Simpsons B. What is T Explain w plane table C. What are	line at an interval a, 4.60,3.20, 0 m a between the characterule ge-ordinate rule ezoidal rule rule wo-point problem with a neat sketch e surveying.	of 10 m: ain line, the irreg procedure of solv isadvantages of p	gular bounda	oint problem in	08	2,3	1	5
Q 3	boundary 0, 2.50, 3.50, 5.00 Compute the area offsets by 1) The mid-c 2) The avera 3) The Trape 4) Simpsons B. What is T Explain w plane table C. What are	line at an interval 0, 4.60,3.20, 0 m a between the char ordinate rule ge-ordinate rule zoidal rule rule wo-point problen rith a neat sketch e surveying.	of 10 m: ain line, the irreg n? procedure of solv isadvantages of p tics of contours v	gular bounda	oint problem in	08	2,3	1	5

	n-radm		B 3 150m	15	1,4	3	2
	levelling of 30 m: 0.855(on 3.455, 0.5 The RL o	wing consecutive readings were staff on a continuously sloping; A), 1.545m 2.355, 3.115, 3.825, 85, 1.015, 1.850, 2.755, 3.84599 f A was 380.500m. Make entrie eks. Determine the gradient of A	ground at a common interval 5, 0.455, 1.380, 2.055, 2.855, 1(on B). s in level book and apply the				
Q 6	A. The follow	15	1,4	2	i		
	attraction included	there local attraction was suspect at a different station, the corresponding to the plotter and show in it all include the following the state of the plotter and show in it all include the state of the plotter and show in it all include the state of the plotter and show in it all include the state of the plotter and show in it all include the state of the plotter and show in it all include the plotter and the p	assuming AB= 180 m, BC=				
	attraction included	at a different station, the correangles. Draw a sketch of the plo	ect bearings of lines and the assuming AB= 180 m, BC=				
	attraction included a 120m, CI	at a different station, the corrections. Draw a sketch of the ploton and show in it all include	ect bearings of lines and the assuming AB= 180 m, BC= ed angles.				
	attraction included a 120m, CI	at a different station, the corrections. Draw a sketch of the ploton and show in it all include FB	ect bearings of lines and the assuming AB= 180 m, BC= ed angles. BB				
	attraction included a 120m, CI	at a different station, the correction angles. Draw a sketch of the ploto = 60m and show in it all include FB 59000'0"	bet bearings of lines and the tassuming AB= 180 m, BC= ed angles. BB 239000'0"				
	attraction included a 120m, CE Line AB BC CD DE	at a different station, the correct angles. Draw a sketch of the plot be 60m and show in it all include FB 59000'0" 139030'0"	ect bearings of lines and the assuming AB= 180 m, BC= ed angles. BB 239000'0" 317000'0"				
	attraction included a 120m, CE	at a different station, the correct angles. Draw a sketch of the ploto = 60m and show in it all include FB	bet bearings of lines and the transuming AB= 180 m, BC= ed angles. BB 239°00′0" 317°00′0" 36°30′0"				
	attraction included a 120m, CE	at a different station, the correct angles. Draw a sketch of the plot D= 60m and show in it all included FB 59000'0" 139030'0" 215015'0" 20800'0"	bet bearings of lines and the assuming AB= 180 m, BC= ed angles. BB 239°00′0" 317°00′0" 36°30′0" 29°00′0" 138°45′0"	05	1	1	1
Q 7	attraction included a 120m, CE Line AB BC CD DE EA B. Explain D	at a different station, the correct angles. Draw a sketch of the plot D= 60m and show in it all included FB 59000'0" 139030'0" 215015'0" 20800'0" 318030'0"	BB 239°00′0" 317°00′0" 36°30′0" 29°00′0" 138°45′0" attraction.	05	1 1,3	1	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

101112

END SEM/RE-EXAM EXAMINATION JAN 2025

Program: B.Tech. (Civil) ENGINEERING Lun 1/1

Course Code: BS-BTC 302

Course Name: Engineering Geology

Duration: 3 Hours Maximum Points: 100

Semester: III

NOTE: Attempt the question paper in either ascending sequence or descending sequence. Start a new question on a fresh sheet. Use of scientific calculators is permitted. Mention the

correct question numbers in the answer sheet. Attempt any 5 questions out of the 7

questions.

Vo.	Quest	ions		Points	CO	BL	Module No.
1	Solve	the following questions.		4			
1.	What	is a thalweg? Explain it using a	diagram.	6			1
2.	Where	e do s-waves disappear in the i	internal layers of the Earth? What is the			}	1
	reason	behind the disappearance?					
1.B	Solve	the following questions		5			
1.	List or	ut the common rock forming mi	nerals.	2	}		2
2.	What	is the difference between rocks	and minerals?	3			
3.	Which	of the following is a foliated	metamorphic rock - quartzite, schist, and				
	marble	e.			1	2	
.2A	Discu	ss the issues associated with a si	te which is:	10		*	
1.	An are	ea with limestone and claystone	bedding.	10			3
2.	An are	ea with basalts which have vesion	eles and have columnar joints.	ĺ)
3.	An are	ea with foliated metamorphic ro	cks such as slates and schists.				
2B		the following.		10			1
		•		10			ı
	1.	Focus/Hypocentre	A.The point on the surface that is	, I		!	
		-	directly perpendicular to the focus.				
	2.	Epicentre	B.Measure the scale of absolute				
		•	magnitude of an earthquake				
	3.	S-waves	C.The point where the energy of an				
			earthquake is released inside the Earth.				
	4.	Richter scale	D.Measures the intensity of an				
	''	Tables source	earthquake based on based on the				
			amount of destruction caused				
	5.	Mercalli scale				1,	
. 3A			E.Second to reach the epicenter		1, 2	2, 3	
. 3A		the following features with the		10			
_		ed metamorphic rock.	A. Phyllite/Schist			1,	
2	Ivietar	morphic composed of CaCO3.	B. Gneiss	<u> </u>	1	2, 3	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION JAN 2025

3	Sedimentary rock composed of CaCO3. C. Marble				
4	Preferred orientation of mafic and D. Limestone				
	felsic minerals arranged in separate layers.				
5	Fine grained metamorphic rock with E. Slate				
	layers and fissility.	-			
			-		
Q.3 B	Solve the following questions.				
1.	List out the properties of sedimentary rocks with examples.	5			
2.	Claystone, Sandstone, Gneiss, Conglomerate, Limestone. Find the odd one out	5			
0.4	and justify your answer.				
Q. 4	Solve the following questions.	5			
1.	Draw the diagrams of an antiform and synform. Identify the anticline and				
	syncline from the diagrams below:				
	— youngest rocks — oldest rocks				
			1		
	— youngest rocks — youngest rocks				
	A R				
0	What is the geological feature in which blocks of rocks move with respect to one	5		}	
2.	another? Mention its types with a short description.				
2	What are the factors causing landslides?	5]	1	
3. 4.	Comment on the type of dams that can be constructed at a location with:	5			
	Narrow valleys, and strong abutments				
a. L			Ì		•
b.	Wide valleys. Strong foundation, and moderately narrow valleys.		1	,	
C.		}		1,	
d.	Seismically active regions. Wide valleys with weak or permeable foundations.		1,2	2, 3	4
e.	Write a note on (any 5)		1-		
Q.5A	Dip and strike	10			4
1. 2.	Right hand thumb rule for identifying the dip and strike		ļ		
3	Principle of Original horizontality				
	Principle of Uniformitarianism				
4. 5	Unconformities				
5.	Principle of order of superpositions				
6.	Principle of inclusions				
7.	Principle of inclusions Principle of crosscutting relationships			1,	
8. O. 5D		10	1, 2	2,3	6
Q. 5B	What is a cone of depression: Which factors influence and some of depression:				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai -400058

END SEM/RE-EXAM EXAMINATION JAN 2025

Q.6	Solve the following questions.		T		
1.	List out the direct methods of geological investigation.	5			
2	What is sorption? What happens if the value of sorption exceeds 60%?	5		_	
3.	A rock sample has the following properties:	5			
	• Volume of voids: 35 cm ³				
	• Total volume of the sample: 140 cm ³				
	Calculate the porosity of the sample. Express the answer as a percentage.	-			
4	Write a note on (any 1)	5			
i.	Seismic method of geophysical investigation				
ii.	Self-potential method of geophysical investigation			1,	
iii.	Gravity method of geophysical investigation.		1, 2	2,3	5
. 7A	Solve the following questions:		-, -	2, 5	
1.	Which rocks are suitable for construction of tunnels?	2			7
2.	Comment on the issues that will be encountered if a tunnel is to be constructed	8			10 M
	at the depth of 80m in the diagram below.	0			- milegal
					1000
	- 20 In Ose-basiden - 20 M				
	- 40 M				
	State Timestone State				
	1990 Company Control Company				
•	-1 MODE - 1249K				
	A horizontal tunnel is to be driven at the depth of 80 meters for the given				
	hypathetical geological section. Comment on the various possible problems that might be encountered during tunneling with an crophasis on the lithological aspect of the area.				
. 7B	Solve the following questions.	10		1,	6
	How is an unconfined aquifer different from confined and perched aquifers?	10		2,	
	25 and an entermined admirer different from confined and perched aquifers?		3	3, 4	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-examination 2024-25

Program: S.Y.B.Tech WP (Civil) Dun 191

Duration: 3 Hours

Maximum Points: 100

Course Name: Laplace Linear Algebra and Complex Analysis

Semester: III

Course Code: BS-BTC301

6/1125

Note:

1. Attempt Any Five Questions

2. Answers to the sub questions should be grouped together

		Questions	Points	CO	BL	Mo dule
1	a	Test the consistency of the following system of linear equations and if possible, solve $2x+3y-z-2=0$ $x+2y+z+3=0$ $3x+y-2z-1=0$	6	4	BL5	4
	b	Find the sum and product of Eigen values of A^{-1} , where $A = \begin{bmatrix} 3 & 1 & 6 & 8 \\ 0 & 2 & 5 & 7 \\ 0 & 0 & 5 & 3 \\ 0 & 0 & 0 & -1 \end{bmatrix}$	6	4	BL5	4
	С	Evaluate $(i)L\{e^{-3t}\sin 4t \cdot \cos 3t\}$ $(ii)L\{t\cos(at+b)\}$, where a and b are constants.	8	1	BL3	1
2	а	Find Eigen Values and Eigen Vectors of the following matrix $A = \begin{bmatrix} 3 & 4 \\ 4 & -3 \end{bmatrix}$	6	4	BL5	5
	Ъ	Under the transformation $w = \frac{1}{z}$, find the image of $ z-3 = 2$	6	3	BL2	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-examination 2024-25

	c	Reduce the following matrix to normal form and hence find its rank. $A = \begin{bmatrix} 2 & 1 & 4 & -1 \\ 1 & 2 & 1 & 3 \\ 4 & 5 & -1 & 2 \\ 8 & 7 & 7 & 1 \end{bmatrix}$	8	4	BL3	4
3	a	Prove that $v = x^4 - 6x^2y^2 + y^4$ is a harmonic function and find corresponding harmonic conjugate	6	3	BL4	3
	Ъ	Evaluate $L^{-1}\left\{\frac{3s+1}{\left(s-1\right)^2\left(s+2\right)}\right\}$	6	1	BL5	2
	c	Verify Cayley Hamilton Theorem for the following matrix and find A^{-1} , if it exists $A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$	8	4	BL5	5
4	а	Determine constants a,b and c if $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{bmatrix}$ is orthogonal.	6	4	BL5	4
	Ъ	Evaluate $\int_{0}^{\infty} te^{-3t} \cos 4t \ dt$	6	2	BL3	1
	С	Using Convolution Theorem, Evaluate $L^{-1}\left\{\frac{1}{(s+3)(s-2)^3}\right\}$	8	1	BL3	2
5	а	Evaluate $L\left\{\frac{e^{-at}-e^{-bt}}{t}\right\}$	6	1	BL4	2
	b	Find the map of the straight line $3x+2y=1$ by the transformation	6	3	BL4	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-examination 2024-25

	П					,
		$w = \frac{1}{z}$				
	С	Evaluate	8	1	BL2	1
		$(i)L\{\sin t\cdot\sin 2t\cdot\sin 3t\}$		1	BL4	1
		$\begin{cases} (ii) \ I \left(e^{-2t} f(s) \right) \text{ where } I \left(f(s) \right) \end{cases} 2s - 3$				
	<u> </u>	$(ii) L\{e^{-2t}f(t)\}\ $ where $L\{f(t)\}=\frac{2s-3}{s^2+s+1}$				
						-
6	а	Evaluate $L^{-1} \left\{ \frac{2s+3}{(s-1)(s-2)(s-3)} \right\}$	6	1	BL5	2
		$\left\lfloor (s-1)(s-2)(s-3) \right\rfloor$				
	b	Evaluate $L\left\{\left(t+e^{-t}+\sin t\right)^2\right\}$	6	1	BL3	1
		(
	С	For the following matrix A, find two non-singular matrices P and	8	4	BL3	4
		Q such that PAQ is in the normal form.			BL5	-
		[1 2 3 4]				
		$A = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10 \end{vmatrix}$				
		[3 0 5 -10]				
			ļ 	<u> </u>		
_						
7	а	Find the analytic function $f(z) = u + iv$ whose imaginary part is	5	3	BL2	3
		$v = x^2 - y^2 + \frac{x}{x^2 + y^2}$			BL3	
		$x^2 + y^2$				
	b	((a-1)(a-2)))	5	1	BL5	2
		Evaluate $L^{-1} \left\{ \log \left(\frac{(s-1)(s-2)}{s^2+4} \right) \right\}$	J	1	DL3	2
	_					
	С	Find Eigen Values and Eigen Vectors of the following matrix	10	4	BL1	5
		$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$			BL3	
		$A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$				
		[3 3 4]				
				L1		

Formula

1.
$$\frac{d}{dx}e^{ax} = ae^{ax}$$

$$\therefore \int e^{ax} dx = \frac{e^{ax}}{a}$$

2,
$$\frac{d}{dx}\sin(ax+b) = a\cos(ax+b)$$
 $\therefore \int \cos(ax+b)dx = \frac{1}{a}\sin(ax+b)$

$$\therefore \int \cos(ax+b) dx = \frac{1}{a} \sin(ax+b)$$

3.
$$\frac{d}{dx}\cos(ax+b) = -a\sin(ax+b)$$

3.
$$\frac{d}{dx}\cos(ax+b) = -a\sin(ax+b) \qquad \therefore \int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b)$$

$$4. \quad \frac{d}{dx}x^n = nx^{n-1}$$

$$\therefore \int x^n dx = \frac{x^{n+1}}{n+1}$$

5.
$$\frac{d}{dx}\log(ax+b) = \frac{a}{ax+b}$$

$$\therefore \int \frac{1}{ax+b} dx = \frac{1}{a} \log (ax+b)$$

Integration by Parts

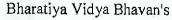
$$\int uvdx = u \cdot \int vdx - \int \left[\frac{du}{dx} \cdot \int vdx \right] dx$$

Generalized Formula for Integration by Parts

(For Product of Algebraic and Trigonometric functions or Product of Algebraic and Exponential functions)

$$\int uvdx = u \cdot v_1 - u' \cdot v_2 + u'' \cdot v_3 - u''' \cdot v_4 + \cdots$$

where
$$u' = \frac{du}{dx}$$
, $u'' = \frac{du'}{dx}$, $u''' = \frac{du''}{dx}$ and $v_1 = \int v dx$, $v_2 = \int v_1 dx$, $v_3 = \int v_2 dx$


u is always Algebraic Function, where as v can be either Trigonometric or Exponential Function

Trigonometric Formulae

1.
$$\sin A \cdot \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$$

2.
$$\cos A \cdot \cos B = \frac{1}{2} [\cos(A - B) + \cos(A + B)]$$

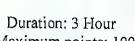
3.
$$\sin A \cdot \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

END SEM/RE-EXAM EXAMINATION FOR WORKING

PROFESSIONAL JAN/FEB 2024-25


Program: B.Tech. Civil Engineering

Course Code: PC-BTC305

Course Name: Concrete Technology

Duration: 3 Hour Maximum points: 100

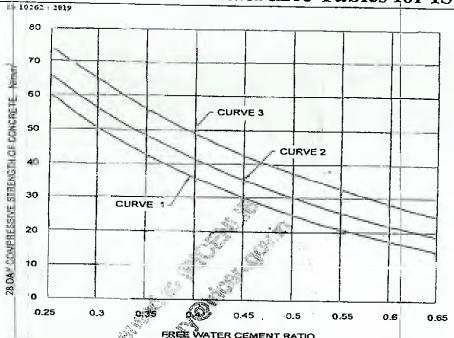
Semester: III

Instructions:

Oue. Descriptions

Attempt any FIVE questions out of SEVEN questions

Answers to all sub questions should be grouped together


3. Draw neat diagrams wherever required

Assume suitable data if necessary and state the clearly.

No.	Descriptions	Points	co	BL	Module No.			
	(a) "Ready mix Concrete turns out to be a boon for Indian construction industry" justify your answer. Also discuss the various units and their functions you have observed during site visit.				3	2	05	
Q1	(b) How workability of examine the quality of	of normal concrete and SO fresh concrete?		07	3	4	04	
	concrete.	ortance of Alkai-Silica r	eaction on durability of	05	1	2	01	
	a. Differentiate betwee	en weigh batching and v	olume batching of	5	1	3	03	
	b. Design concrete for 10262:2019 for the	or M35 grade using guid e following data.	lelines given in IS	15	2	2	03	
Q2	Exposure condition: Maximum size of Method of placement — Severe aggregate — 20 mm crane and bucket				Specific gravity of 20 mm aggregate (M ₂)- 2.80			
Q2	Strength of cement Workability Type of coarse OPC —43 grade slump, 100 mm aggregate angular coarse aggregate				ic gravi ate (M			
	Zone of sand — 1 Water absorption- M ₂ -1.8% & M ₁ -1.3% aggregate-3.1% Total moisture content M ₂ -0.7% & M ₁ -0.8% in fine aggregate = 5.6 %			aggreg	ic grav ate —	-		
Q3	(a) Design concrete for M 25 grade using DOE method. Refer the data from Que2 and chart attached at the end of manuscript. Consider maximum permissible ratio of 0.55 and minimum cement content as 325 kg per cum.			12	3	4	3	
	(b) Why corrosion of steel reinforcement occurs in concrete? Explain in detail the procedure for conducting Half-cell potentiometric test.			08	2	2	5	

	(a) Design concrete for M30 grade using ACI Method; consider the	12	2	3	3 .
Q4	data related to the properties of material as given in Que.No.2. (b) Discuss problems occurs in cold weather concreting. Suggest suitable measures to improve the performance.	8	1	2	4
Q5	(a) It is proposed to design SCC of grade M35 for slump flow of 600-800 mm, consider w/c of 0.34, and the percentage of fine aggregate passing from 125 micron as 4.1 %. Assume suitable powder content between 400-600 kg/m³and other data from the que2a.	12	1	2	3
Q3	(b) Distinguish between (i) Hydrophobic cement and low heat cement (ii) Hand mixing vs. Machine mixing	8	2	2	1,3
	(a) What are the benefits of High Performance concrete (HPC)? Discuss in brief different properties of HPC.	10	1	2	4
Q6	(b) Explain the effect of w/c on strength, durability and workability of	6	3	3	2
Qu	concrete. (c) How Silica fume act as sustainable material to improve the performance of concrete?	4	2	3	1 (
	Write explanatory notes on the following (any Four)	5	3	2	4
	i) Materials for HPC ii) Ultrasonic pulse velocity test	5	2	2	5
Q7	iii) pH test of concrete	5	3	2	5 3
	iv) Testing of chemical admixture v) Bulking of sand	5 5	1	2 2	3 1
	vi) Bogues compound	5	3	2	1

Reference Tables for IS 10262:2019 Method of Concrete mix design

to expected 28-days are made at the first of 33 and < 43 Minm?. Urve 2 for expected 29 days are with a trength of 43 and < 53 Minm?. The superior of 35 Minm? and 35 Minm? and 35 Minm?

NOTES

IS 10262: 2019

Table 5 Valume of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate for Water-Cement/Water-Cementitious Materials Ratio of 0.50 (Clause 5.5)

SI Na.	Nominal Maximum Size of Aggregate mm	Volume of Coarse Aggre	gate per Unit Volum Åg	e of Total Aggregat regate	e for Different Zones of Fine
(1)	(2)	Zone IV (3)	Znne III (4)	Zone II	Zone I
1)	10	0.54	0.52	0.50	0.48
ñ,	20	9.66	0.64	0.62	0.60
iii)	40	0.73	0.72	0.71	0.69

OTES

Volumes are based on aggregates in saturated surface dry condition.

These volumes are for crushed (angular) aggregate and suitable adjustments may be made for other shape of aggregate.

Suitable adjustments may also be made for line aggregate from other than natural sources, normally, crushed sand or mixed sand may beed lesser fine aggregate content. In that case, the coarse aggregate volume shall be suitably increased.

It is recommended that fine aggregate confurming to Grading Zone IV. as per IS 383 shall not be used in reinforced concrete tutless lests are been made to ascertain the suitability of proposed mix proportions.

Table 5 Minimum Cement Content, Maximum Water-Cement Ratio and Minimum Grade of Concrete for Different Exposures with Normal Weight Aggregates of 20 mm Nominal Maximum Size

(Clauses 6.1.2, 8.2.4.1 and 9.1.2)

SI No,	Exposure		Plata Concrete			Reinforced Concre	te
		Minimum Cement Content kg/m'	Maximum Proc Water- Cement Ratio	Minimum Grade of Concrete	Minimum Cement Content kg/m*	Maximum Free Water- Cement Ratio	Minimum Grade of Concrete
1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
i)	Mild	220	0.60		300	0.55	M 20
lil)	Moderate	240	0.60	M 15	300	0,50	M 25
iń)	Severe	250	0.50	M 20	320	0,45	M 30
iv)	Very severe	260	0,45	M 20	340	0.45	
v}	Extreme	280	0.4G	M 25	360	0.40	M 35 M 40
Nζ	OTE3					4.10	171 40

1 Cement content prescribed in this table is irrespective of the grades of cement and it is inclusive of additions mentioned in 5.2. The additions such as fly ash or ground granulated blast furnace slag may be taken into account in the concrete composition with respect to the cement content and water-cement ratio if the suitability is established and as long as the maximum amounts taken into account do not exceed the limit of pozzolona and slag specified in IS 1489 (Part 1) and IS 455 respectively.

2 Minimum grade for plain concrete under mild exposure condition is not specified.

Table 4 Water Content per Cubic Metre of Concrete For Nominal Maximum Size of Aggregate

(Clause 5.3)

SI No.	Nominal Maximum Size of Aggregate num	Water Content
(1)	(2)	(3)
i)	10	208
ii)	20	186
iii)	40	165

DWater content corresponding to saturated surface dry aggregate

Table 3 Approximate Air Content (Clause 5.2)

SI No.	Nominal Maximum Size of Aggregate mm	Entrapped Air as Percentage of Volume of Course
(l)	(2)	(3)
i)	10	1.5
ii)	20	0.1
iii)	40	0.8

5.2.1 The actual values of air content can a st adopted during mix proportioning, if the site d to least 5 results) for similar mix is available.

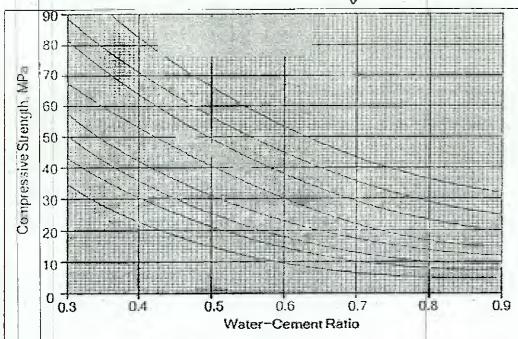


Table 20.47. App. Free water content required for various workability according to 1988 British Method

Agg	regale	Water consens kg/m3 for slump				
Max size	an size Type 0 — 10 mm		10 30 mm	30 60 mm	60 180 mm	
mm.		Ver Ber serves > 12	6-12	36	0-3	
10	Un crushed crushed	150 180	180 205	205 230	225 250	
20	Un enished enished	135 170	160 190	180 210	195 225	
30	Un crushed crushed	115 155	140 175	160 190	175 205	

Table 20.48. Reduction in water content of table 21.47 when fly ash used.

So of fly ash in	Shone in non Vee Bee seconds	Reduction in water content kg/m			
cementitious material		0 — 10 > 12	10 30 6 12	3060 36	60 180 0 3
lo		\$	5	5	10
20	1	10	10	10	15
30]	15	15	20	20
40		20	20	25	25
50	_	25	25	30	30

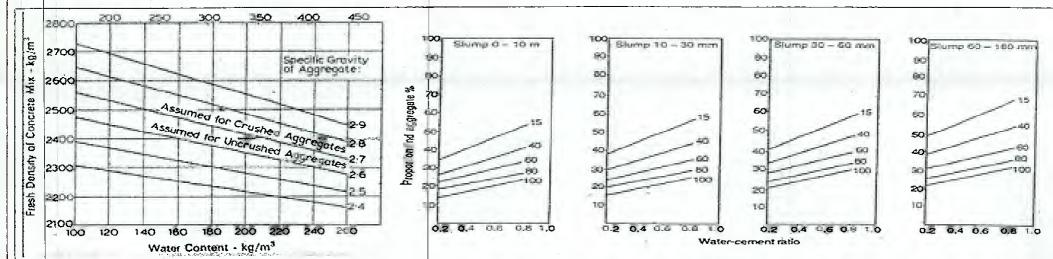


Fig 20.12. (b)

Table 20.46 App	Compressive strength	of concrete in Mpa wit	th w/c of 0.5 as per DOE i	for OPC (Type I) and SRC	(Type v) at diff time period
Type of cement		3 days	7 days	28 days	91 days
OPC	Uncrushed	18-22	27-30	40-42	48-49
SRC	Crushed	23-27	33-36	47-49	55-56

Γable 1,2 and 3 for ACI Method Concrete Mix Design

(1) Dry Bulk Volume of coarse aggregate/ unit volume of concrete as per ACI 211.1-91

Maximum size of aggregate	Bulk volume o	of dry rodded C fineness mod	A Junit volume in ulus of sand of	of concrete for
FM	2.4	2.6	2.8	3.00
10	0.5	0.48	0.46	0.44
12.5,	0,59	0.57	0.55	0.53
20 (25.40.50,70)	0.66	0.64	0.62	0.60
150	.87	0.85	0.83	0.81

(2) Relation between water/cement ratio & average compressive strength of concrete, as per ACI211.1-91

Average compressive strength at 28 days	Effective water/cer	nent ratio (by mass)
MPa	Non air entrained concrete	Air entrained concrete
45	0.38	1
40	0.43	
35 (30,25,20)	0.48	0.4
15	0,8	0.71

(3) Requirements of ACI-318-89 for w/c ratio & strength for special exposure conditions

Exposure condition	Maximum w/c rallo, normal density aggregate concrete	Minimum design strength, low densit aggregate concerte MPa		
Concrete intended to be watertight (a) Exposed to fresh Water (b) Exposed to see water	0.5 0.45	25 30		
Concrete exposed to freezing in a moist condition	0.45	30		
For corresion protection of reinforced concrete exposed to de icing salts, sea water	0.4	33		

Table 4,5 and 6 for ACI Method Concrete Mix Design

(4) Recommended value of slump for various types of construction as per ACI 211.1-91

Type of construction	Range of slump (mm)
Rein cross foundation walls & footings	20-80
Pain footings, substructure wall	20-80
Beams & reinforced walls	20-100
Building columns	20-100
Pavements & slabs	20-80
Mass concrete	20-80

(5) Approximate requirements for mixing water & air content for different workabilities & nominal maximum size of aggregates as per ACI211.1-91

and They'r	No	n air entrained	concret e	
Worket 14,	Water cont	ent, kg/m3 of co size	ondrat a for ind k	ded maximum
(Stump)	10 mm (25, 40,50	12.5 mm ,70)	20 ma	150 mm
30 -50 สากา	205	200	185	125
80-100 mm	225	215	200	140
150-180 mm	240	230	210	
Approx entrapped air (%)	13	2.5	2	0.2

(6) First estimate of density of fresh concrete as pe ACI 211.1-91

Maximum size of aggregate (mm)	First estimate of density of fresh concrete				
April 200	Non air entrained kg/m²	Air entrained kg/m ³			
10	2285	2190			
12.5 (20,25.40,50)	2315	2235			
26	2355	2280			
150	2505	2435			

As per ACI in absence of record; required increase in mean strength for specified design strength								
Sperified design Strength (Mp2)	Less than 21	21-35	35 or more					
Required Increase in mean strength (Mpa)	7	8.5	10					

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

End Sem/Re-Examinations Working Professional- January 2025

Program: J. YCivil Engineering

Sun 111

Duration: 3hr

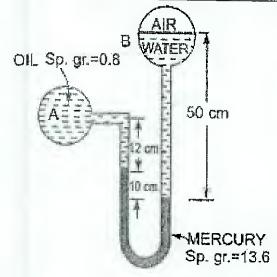
Maximum Points: 100

Course Code: PC-BTC306

Semester: III

Course Name: Fluid Mechanics

Instructions


1. Attempt any 5 Questions.

2. Neat diagrams must be drawn wherever necessary.

3. Assume Suitable data if necessary and state it clearly.

211/2 3)	12)	
et			

Q. No.	Questions	Points	CO	BL	Mod
1a	Determine the viscosity of a liquid having a kinematic viscosity 6 stokes and specific gravity 2.0	4	CO1	BL2	1
1b	Find the capillary rise of water in a tube 0.03 cm diameter. The surface tension of water is 0.0735N/m	4			1
1c	State and Prove Pascal's law	8	CO1	BL2	2
ld	An oil of specific gravity of 0.8 is under a pressure of 137.2kN/m ²	4	CO1		2
	i) What is the pressure head expressed in meter of water?ii) What is the pressure head expressed in meter of oil?				
2a	Discuss the classification of fluids.	8	CO2	BL2	1
2b	A rectangular plane 3.0m wide and 4.0 m deep is immersed in water in such a way that its plane makes an angle of 30 degrees with the free surface. Determine the total pressure on one face of the plate and position of the center of pressure when its upper edge is 2m below the free surface.	8	CO1	BL3	3
2c	Brief about the classification of pressure measuring devices.	4	CO1	BL1	2
3a	A differential manometer is connected to two pipes A and B as shown in the figure. At B air pressure is 7.848N/cm ² . Find absolute pressure at A.	6	CO1	BL2	2

3b	1				
	Derive continuity equation for 3 dimensional flow.	8	C 2	SLZ	4
	A body of dimensions width 2m, depth 1.5m and length 4m floats				
3c	horizontally in water. Find the volume of water displaced and position	6	CO1	BL3	3
	of center of buoyancy. G for wooden block is 0.7.				
4a	Describe Reynolds experiment, along with the characteristics of	8	CO3	BL2	5
та	laminar and Turbulent flow.				
4b	Discuss classification notches and orifices.	4	CO2	BL1	4
4c	Water flows through a pipe AB 1.2m dia at 3m/s and then passes	0	001	DI 2	1
40	through a pipe BC 1.5m dia. At C the pipe branches.	8	CO1	BL3	4
•	Branch CD is 0.8 m in diameter and carries one third of flow in AB. The	e flow	velocity i	in branc	h
	CE2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the	velocity	y in CD a	and diar	nete
	of CE	•			
۶.	Prove that equipotential lines are orthogonal to streamlines at all	6	CO2	BL2	4
5a	points of intersections.				
5b	Explain in detail stream line, pathline and streak line.	6	CO2	BL2	4
<i>-</i>	Discuss the development of boundary layer along the flat plate and	8	1		6
5c	any 2 method to control the separation of boundary layer.		CO3	BL2	
<i>(</i> -	State Bernoulli's theorem. Explain in depth the applications of the	0	002	DIA	-
6a	same.	8	CO3	BL2	1
6b	In a fluid, the velocity field is given by	0	001		1-1
	in a rigid, are verterly freig to give by	8	CO1	BL3	4
	$V = (3x+2y)i + (2z+3x^2)j + (2t-3z)k$	8	COl	BL3	4
	 	8	[COI	_BL3	4
	$V = (3x+2y)i + (2z+3x^2)j + (2t-3z)k$		COL	BL3	4
	$V = (3x+2y)i + (2z+3x^2)j + (2t-3z)k$ Determine		COL	BL3	4
	V= $(3x+2y)i + (2z+3x^2)j+(2t-3z)k$ Determine a) The velocity components u, v and w at any point in the flow field		COL	BL3	4
	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3)	eld.			2D
	V=(3x+2y)i + (2z+3x ²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field by The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4)	eld.			2D
6с	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform	eld.			,
6с	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform and 3D flow.	eld. or non-1	uniform a	and 1D,	4
6c 7a	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform and 3D flow. Differentiate Newtonian and non-Newtonian fluids.	or non-1	uniform a	and 1D,	4
	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform and 3D flow. Differentiate Newtonian and non-Newtonian fluids. A 25 cm diameter pipe carries oil of specific gravity 0.9 at a velocity	or non-1	uniform a	and 1D,	2D
	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform and 3D flow. Differentiate Newtonian and non-Newtonian fluids. A 25 cm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3m/sec. at another section the diameter is 20cm. Find the velocity at this section and also mass rate of flow of oil.	or non-1	uniform a	and 1D,	4
7a	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform and 3D flow. Differentiate Newtonian and non-Newtonian fluids. A 25 cm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3m/sec. at another section the diameter is 20cm. Find the velocity at this section and also mass rate of flow of oil. Discuss the conditions of a equilibrium of a submerged bodies.	or non-1 4 8	cO1 CO3	and 1D, BL1 BL2	4
7a 7b	 V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow fies b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform and 3D flow. Differentiate Newtonian and non-Newtonian fluids. A 25 cm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3m/sec. at another section the diameter is 20cm. Find the velocity at this section and also mass rate of flow of oil. Discuss the conditions of a equilibrium of a submerged bodies. An open tank contains water upto a depth of 2m and above it an oil 	or non-1 4 8	CO1 CO3	and 1D, BL1 BL2 BL2	4
7a	V=(3x+2y)i + (2z+3x²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field b) The speed at point(3,2,3) c) The speed at t=4sec at point (0,0,4) d) Also classify the velocity field as steady, or unsteady, uniform and 3D flow. Differentiate Newtonian and non-Newtonian fluids. A 25 cm diameter pipe carries oil of specific gravity 0.9 at a velocity of 3m/sec. at another section the diameter is 20cm. Find the velocity at this section and also mass rate of flow of oil. Discuss the conditions of a equilibrium of a submerged bodies.	or non-1 4 8	cO1 CO3	and 1D, BL1 BL2	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION JAN/FEB 2024-25 (WPS)

∨, set: i

Program: Civil Engineering Jun 1

Course Code: PC-BTC-303

Course Name: Building Drawing with CAD

Notes: 1. Q.1 is compulsory & attempts any four out of remaining six.

2. Iliustrate answer with neat sketches wherever required.

Duration: 3.00 hrs.

Maximum Points: 100

Semester: III

15100

Q.No	3.Make suitable assumptions where necessary and state t Questions	Points	BL	СО	Module No
1.	A) Draw to a suitable scale developed plan for ground floor of G+1 story bungalow for an Artist on a site of the data given below. 1. Plot size: 14 M x 16 M. (FSI: 1.0) 2. Road is on south side parallel to 14 M direction 3. Wind direction is E-SW-W & climatic zone is cold. 4. Requirements of Engineer a. Office room b. Master bed room c. Living room d. Children bed room e. Kitchen cum dining room f. Guest bed room g. Staircase/bath/WC/store/verandah are to be provided B) Draw terrace plan for above question.	15+05	L4	1-5	1-5
2	A. Draw to a suitable scale line plan of first floor for Q.1A.B. State: Built up area, Rera carpet area, carpet area, super built up area, FAR for Q.1A.	15+05	L2	1-5	1/5
3	A. Draw to a suitable scale, line plan of primary healthcare center building opening on a plot size 30 M x 45 M. Show all units with dimension and position of door, & windows.	20	L3	2-5	1,2
4	 A. Discuss the need, objectives and five pillars of Real Estate Regulation Act, 2016 (RERA). B. Explain following principles of planning in detail, Aspect Circulation 	10+10	L2	2	1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

5	 A. Discuss the necessities of building byelaws. Also explain building bylaws related to height of building and frontage of building. B. Discuss the site selection criteria's for residential building in detail. 	10+10	L2/3	2-5	1/3/5
6	A. Draw to a suitable scale Foundation plan for Q.1A. B. Draw to a suitable scale site plan for Q.1A.	10+10	L3	1-3	1/3/5
7	 A. Define: Perspective Drawing. Discuss the necessity of perspective drawing. Explain the detail procedure for two point perspective drawing. B. Discuss the types of residential building along with advantages and disadvantages. 	10+10	L3	1-3	1/3/5

SARDAR PATEL COLLEGE OF ENGINEERING

14/2/20

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION FOR WORKING PROFESSIONAL

JAN/FEB 2024-25

Program:

B. Tech. Civil Engineering Lew III

Course Code: PC-BTC 305

Course Name: Concrete Technology

Duration: 3 Hour

Maximum Points: 100

Semester: III

Notes:

1. Attempt any FIVE questions out of SEVEN questions

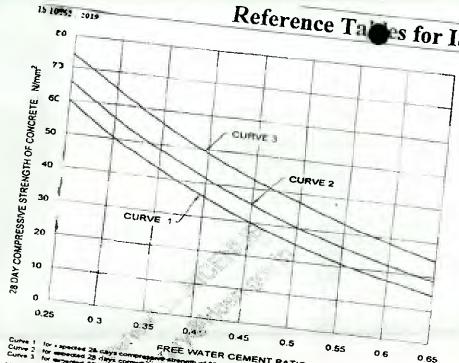
2. Answers to all sub questions should be grouped together

3. Draw neat diagrams wherever required

4. Assume suitable data if necessary and state the clearly.

Q.No.	Questions	Points	СО	BL	Module No.
1	a) Explain in detail the procedure for conducting Carbonation test of concrete.	06	2	2	05
	b) Give in details the classification of aggregates used in concrete.	06	3	1	01
	c. Explain the components and working of RMC plant observed during site visit.	08	3	3	01
2	a). Design a concrete mix of M45 grade using IS 10262:2019; for pile foundation with severe exposure condition. Take a standard deviation of 5 MPa. Use, OPC 53 grade cement, the specific gravities of cement-3.15; Fly ash-2.4, GGBS-2.8; plasticizer-1.1; specific gravities of Coarse Aggregate (10 mm-2.65, 20 mm-2.68) and specific gravity of Fine Aggregate are 2.87. Fineness Modulus of Fine Aggregate is 3.00 (Zone-I). A slump of 175 mm is necessary. The water absorption of coarse aggregate is 1.4% and free moisture aggregate is 0.8%. The water absorption of fine aggregate is 2.2% and free moisture aggregate is 3.5%. Assume any missing data suitably and state them. b). Highlight the importance of core test of concrete from	05	02	3	02
3	structural stability perspective. a. Design concrete for M 35 grade using DOE method. Refer the	12	02	3	02
	data from Que2a and chart attached at the end of manuscript (max.	W/c- 0.	T		cement-3
	b. Discuss in detail the problems due to hot weather concreting. Suggest suitable measures to improve the performance.	08	03	2	04 ¹⁶
4	a. Design concrete for specified design strength of 25 N/mm2 using ACI Method; consider the data related to the properties of material as given in Que.No.2a.	13	2	3	02

SARDAR PATEL COLLEGE OF ENGINEERING


(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai — 400058

END SEM/RE-EXAM EXAMINATION FOR WORKING PROFESSIONAL

JAN/FEB 2024-25

	b. Explain in details procedure for ultrasonic pulse velocity test used to measure quality of concrete.	07	1	2	05
5,	a. It is proposed to design SCC of grade M45 for slump flow of 600-800 mm, consider w/c of 0.32, and the percentage of fine aggregate passing from 125 micron as 3.8 %. Assume suitable	12	2	3	2
	powder content between 400-600 kg/m³ and other data from the que2a. b. Explain in detail various aspects considered to improve the quality of high performance concrete.	08	3	2	3
6	a) State the advantages and disadvantages of self-compacting	06	3	1	3
	concrete. b). Explain the salient Features of high performance concrete. c. Discuss various methods of concrete transportation with their suitability.	06 08	3 2	2	3 4
7	Write short notes on (any four) i. Types of Retarders	20 5 5	1	2	1
	ii. Rice husk ash iii. Hydrophobic cement iv. Silica fume	5 5	3 2	2	3
	v. types of Plasticizers vi. Hydration products	5 5	1 3	2 3	1 1

Reference Takes for IS 10262:2019 Method of Concrete mix design

FREE WATER CEMENT RATIO

IS 10262 : 1919

Table 5 Vanme of Coarse Aggregate per Unit Volume of Total Aggregate for Different Zones of Fine Aggregate for Water-Cement/Water-Cementitions Materials Ratio of 0.50

No.	Nominal Maximum Size	Votume of Coarse A	(Clause 5.5)	- Tare I Isls K	atto of 0.50	- 1110
(1)	Dim:		A	me of Total Aggreg: gregate	tle for Different Zones of	Fine
100	~2)	Zone IV				
1)	0	(3)	Zone III	Zone II		
(i)	-0	0.54	(4)	(5)	Zone I	- 1
111)	Ð	9.66	0.52	0.50	(6)	- 1
NOTES	**	0.73	0.64	0.62	0.48	
1 Volumes			0.72	0 71	0.60	
2 These vols	are based ** aggregates in san	Itraredc.		- 1	0.69	

1 Volumes are based *# aggregates in sanurated surface dry condition.

2 These volumes are f a crished (angular) aggregate and suitable adjustments may be made for other shape of aggregate

2 these volumes are 1-8 chished (angular) aggregate and sulface adjustments may be made for outer soope of aggregate

3 Suitable adjustments may also be made for fine aggregate from other than natural sources, normally, crushed sand or mixed sand may need 'esser fine aggregate content. In they case, the coarse aggregate volume shall be suitably increased. need exect time aggregate content. In the case, the coarse aggregate visions are summerly increased.

4 is recommended that fine aggregate conforming to Orading Zone IV, as per IS 383 shall not be used in reinforced concrete nulless tests.

Table 5 Minimum Cement Content, Maximum Water-Cement Ratio and Minimum Grade of Concret for Different Exposures with Normal Weight Aggregates of 20 mm Nominal Maximum Size

SI	Exposure		(Clause	x 6 1.2 8.2.4.1	and 9.1.2)	m Nominal Ma	ximum Size
		Minimum Comen	Maximum	-		Reinforced Cone	rete
n	(2) Mila	Content kg/m¹	Free Water- Cement Ratio	Minimum Grade of Concrete	Minimum Content Content kg/m²	Maximum Free Water- Cement Ratio	Minimum Grade of Concrete
)ii) iii) iv)	Modernie Severe	220 240 250	0.60 0.6g 0.50	(5) # M 15	(6) 300 300	(7) 0.55	(8) M 20
v) NOT		260 280	0.45 0.40	M 20 M 20 M 25	320 340	0.50 0.45 0.45	M 25 M 30

t Coment content prescribed in this table is irrespective of the grades of coment and it is inclusive of additions mentioned in \$22. The additions such as fly ash or ground granulated blast furnace sing may be taken into account in the concrete composition with respect to the certest content and water-certest ratio if the suitability is established and as long as the maximum amounts taken into account do not exceed the limit of pozzolona and slog specified in IS 1489 (Part)) and IS 455 respectively. 2 Minimum grade for plain concrete under mild exposure condition is not specified.

Table 4 Water Content per Cubic Metre of Concrete For Nominal Maximum Size of Aggregate

(Clause 5.3)

-	(cianse).5	1	- 15
SI No.	Nominal Maximum Size of Aggregate	Water Con	ent ^{ir}
(4)	mm	kg	
(1)	(2)		19, 2
<i>i</i>)	10	(3)	
ii)	20	208	-
iii)	40	-186	. 0
1)Water co.	nicht correspond	165	16

Water content corresponding to saturated surface dry aggregate.

Table 3 Approximate Air Content (Clause 5.2)

C		2,
Sl No. (1)	Nominal Maximum Size of Aggregate mm	Enirapped Air, as Percentage of Volume of Concre
i) ii)	10	(3)
iii	20 40	1.5 1.0
5.2.1 TI	le actual values of i	0.8

5.2.1 The actual values of air content can also adopted during mix proportioning, if the site data least 5 results) for similar mix is available.

Table 20.47. App. Free wall to 1988 British Method

Aggregate		Water consent light for shump				
Max size	T)7~	0 — 10 mm	10 — 30 mm	30 — 60 mm	60 180 mm	
enem.		Vec Bec secons > 12	6 — 12	3 6	0=3	
10	Un crushed crushed	150 180	180 205	205 230	225 250	
20	Un crushed - crushed -	135	160 190	180 210	195	
30	Un crushed crushed	115	140 175	160 190	175 205	

Table 20.48. Reduction in water content of table 21.47 when fly ash used.

% of fix ash in		Reduction in water content kehn				
comentations material	Stump in min Vee Bee seconds	0 — 10 > 12	10 — 30 6 — 12	30 — 60 3 — 6	60 180	
10		5	5	5	10	
20	- 1/	10	10	10	15	
30	- 1	- 15	15	20	20	
40		20	20	25	25	
50		25	25	30	30	

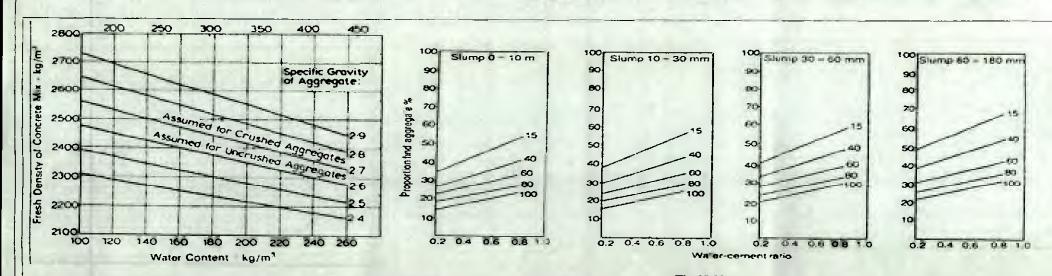


Fig 20-12. (b)

Type of ce nent		3 days	7 days	28 days	91 days
OPC	Uncrushed	18-22	27-30	40-42	48-49
SRC	Crushed	23-27	33-36	47-49	55-56

Table 1,2 and 3 for ACI Method Concrete Mix Design
(1) Dry But Volume of coarse aggregate/ unit volume of (2) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Relation between the coarse aggregate (3) Dry But Volume of (3) Dry But Volume

concrete as per ACI 211.1-91

Maximum size of aggregate	Bulk volume o	f dry rodded C/ fineness modu		of concrete for
FM	2.4	2.6	2.c	3.00
10	0.5	0.48	0.46	0.44
12.5,	0.59	0.57	0.55	0.53
20 (25,40,50,70)	0.66	0.64	0.62	0.60
150	.87	0.85	0.83	0.81

(2) Relation between water/cement ratio & average compressive strength of concrete, as per ACI:11.1-91

Average compressive strength at 28 days	Effective water/cement ratio (by mass)			
МРа	Non air entrained concrete	Air entrained concrete		
45	0.38			
40	0.43			
35 (30,25,20)	0.48	0.4		
15	0.8	0.71		

(3) Requirements of ACI-318-89 for w/c ratio & strength for special exposure conditions

Exposure condition	Maximum w/c ratio, normal density aggregate concrete	Minimum design strength, low density aggregate concrete MPa	
Concrete intended to be watertight			
(a) Exposed to fresh water	05	25	
(b) Exposed to sea water	0.45	30	
Concrete exposed to freezing in a moist condition	0.45	30	
For corrosion protection of reinforced concrete exposed to de icang salts, sea water	0.4	33	

Table 4,5 and 6 for ACI Method Concrete Mix Design

(4) Recommended value of slump for various types of construction as per ACI 211.1-91

Type of Lonstruction	Range of slump (mm)	
Reinforces foundation walls & footings	20-80	
Plain footings substructure wall	20-80	
Beams & rainforced walks	20-100	
Building columns	20-100	
Pavements & slabs	20-80	
Mess concrete	20-80	

(5) Approximate requirements for mixing water & air content for different workabilities & non-mal maximum size of aggregates as per A 20211 1-91

	No	n air entrained	concrete					
Working hity	Water dictent is 103 of consecto for a dicted intextment against size							
(Stong)	10 mm (25 , 40,50	12.5 mm ,70)	- Zill forns	150 mm				
30 -51) nim	205	200	185	125				
80-100 mm	225	215	200	140				
150-180 mm	240	230	210					
Approx entrapped air (%)	3	2.5	2	0.2				

(6) First estimate of density of fresh concrete as pe ACI 211.1-91

Maximum size of aggregate (mm)	Final estimate of density of Sesh concreta					
	Non ex engained in mil	Air entrained kg/m				
10	2285	2190				
12.5 (20,25.40.50)	2315	2235				
20	23.5	2280				
150	2506	2435				

As per ACI in absence of rec	ord; required increase in mean	n strength for specified design st	rength
Specified design Strength (Mpa)	Less than 21	21-35	35 or more
Required Increase in mean strength (Mpa)	7	8.5	10

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

Re-Examinations Working Professional January 2025

Program:

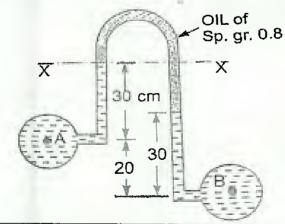
Civil Engineering J. Y. (C) Suy [1]

Duration: 3hr

Course Code: PC-BTC304

Maximum Points: 100

Course Name: Fluid Mechanics


Semester: III

Instructions

1. Attempt any 5 Questions.

- 2. Neat diagrams must be drawn wherever necessary.
- 3. Assume Suitable data if necessary and state it clearly.

Q. No.	Questions	Points	со	BL	Mod
la	1 litre of crude oil weighs 9.6N. Calculate specific weight, density and specific gravity.	6	CO1	BL2	1
1b	State hydrostatic law and derive the expression for the same.	8	CO1	BL2	2
1c	Determine the total pressure and center of pressure on an isosceles triangular plate of base 4m and altitude 4m when it is immersed vertically in an oil of sp. Gravity 0.9. The base of the plate coincides with the free surface of oil.	6	CO1		3
2a	Discuss the types of fluid flows along with mathematical expressions and their example.	8	CO2	BL2	4
2b	A circular plate 3.0m dia is immersed in water in such a way that its greatest and least depth below free surface are 4m and 1.5m respectively. Determine the total pressure on one face of the plate and position of the center of pressure.	8	CO1	BL3	3
2c	Brief about different types of fluid motions.	4	CO1	BL1	4
3a	An inverted differential manometer is connected to two pipes A and B which convey water. Manometric fluid is oil of specific gravity(G)	6	CO1	BL2	2
	G=0.8 Find the pressure difference between A and B				

	Derive continuity equation for 1 dimensional flow.	8	CO2	BL2	4
3c	A body of dimensions 1.5m x 1.0m x 2m, weighs 1962 N in water, find its weight in air. What will be its specific gravity?	6	CO1	BL3	3

	Describe Desmalds experiment along with the sharest inti-	0	000	DY A						
4a	Describe Reynolds experiment along with the characteristics of laminar and Turbulent flow.	8	CO3	BL2	5					
4b	Discuss the classification of fluids.	6	001	DYO						
40		0	CO1	BL2						
4c	A pipe 1 of diameter 450mm branches into two pipes 2 and 3 of diameter 300mm and 200mm respectively. The average velocity in 450mm diameter pipe is 3m/s. find a) Discharge through 450mm diameter pipe; b) Velocity in 200mm diameter pipe, if the average velocity in 300 mm pipe is 2.5 m/sec	6	CO1	BL3	4					
5a	Discuss classification notches and orifices.	4	CO2	BL1	4					
5b	Explain in detail stream tube, stream line, pathline and streak line.	8	CO2	BL2	4					
5c	For a laminar steady flow, prove that the pressure gradient in a direction of motion is equal to the shear gradient normal to the direction of flow.	8	CO3	BL2	5					
6a	Discuss the development of boundary layer along the flat plate	8	CO3	BL2	6					
6b	In a fluid, the velocity field is given by	8	CO1	BL3	4					
	V=(3x+2y)i + (2z+3x ²)j+(2t-3z)k Determine a) The velocity components u, v and w at any point in the flow field. b) The speed at point(1,2,3) c) The speed at t=3 sec at point (0,0,2) d) Also classify the velocity field as steady, or unsteady, uniform or non-uniform and 1D, 2D and 3D flow.									
6c	Differentiate veturimeter and orifice meter.	4	CO1	BL2	4					
7a	Explain with sketches 3 methods of control of boundary layer separation.	6	CO3	BL2	6					
7b	Derive Euler's equation of motion along streamline	8	CO1	BL2	4					
7c	State Bernoulli's theorem along with assumptions made in it. Also discuss the applications of the same.	6	CO1	BL2	4					

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-exam - January/February 2025

Program: B.Tech Civil Engineering (Working Professional)

Course Code: PC-BTC301 Sem III

Course Name: Mechanics of materials

Duration: 3 Hours

Maximum Points: 100

Semester: III

Notes:

• Attempt any 5 main questions

• Draw neat sketches to support your answers

• Assume suitable data if missing and state the same clearly.

Q.No.	Questions	Points	со	BL	Module
1. a)	Define shear stress and explain single shear and double shear with examples	05	02	02	01
1.b)	State the assumptions in theory of simple bending.	05	02	02	03
1.c)	A steel rod of 16mm diameter passes through a copper tube of 32mm external diameter and 20mm internal diameter. The rod is rigidly attached to tube at both the ends. If a tensile force of 100kN is applied to the assembly, evaluate the stresses in each material and the change in length.	10	02	03	01
2.a)	An axial load of 60kN is applied to a bar of 32mm diameter and 1m length. The extension of bar was measured to be 0.3mm and the reduction in diameter was 0.003mm. Evaluate the Poisson's ratio and the values of three moduli.	10	02	03	01
2.b)	 ratio and the values of three moduli. The length of a rail is 32m at 27°C. Determine: The stresses in rail at 80°C, when there is no allowance for expansion The stresses in rail at 80°C, when there is 8mm allowance for expansion The expansion allowance for no stress in rail at 80°C Maximum temperature for no stress in rails when expansion allowance is 8mm 11x10°6/°C and E = 205GPa 		02	03	01
3	Draw the SFD, BMD and AFD for the beam shown in fig. below.	20	01	03	02

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-exam - January/February 2025

	1 SKA m SOKN	iokalm	2:	5 KN·m	
	2m -> > 2m	مممد			
4.a)	A 200 x 500 mm timber beam is strengthened by the addition of $3x500$ mm steel plates secured on its sides. The flitched beam is simply supported and carries a uniformly distributed load of $30kN/m$ over an effective span of $10m$. Analyse the following: i)Bending stresses in timber beam before strengthening ii)Bending stresses in timber and steel plates after strengthening Take $Es = 2 \times 10^5 N/mm^2$ and $E_T = 1 \times 10^4 N/mm^2$.	10	02	03	03
4.b)	A cylindrical vessel, whose ends are closed by means of rigid flange plates, is made up of steel plate 6 mm thick. The length and internal diameter of the vessel are 0.8m and 300mm respectively. Determine the longitudinal and hoop stresses in the cylindrical shell due to an internal fluid pressure of 2.5MPa. Also calculate the increase in length, diameter and volume of vessel. Take $E = 2 \times 10^5$ MPa and μ =0.28	10	03	03	07
	A plane element is subjected to the stresses as shown in the figure below. Determine analytically: i) The principal stresses and their directions ii) The maximum shearing stresses iii) Normal and shearing stresses on a plane inclined at 20° to the horizontal	knise)			
5.a)	100MPa 20MPa 40MPa	10	02	03	06
5.b)	Solve Q 5.a) graphically using Mohr's circle	10	02	03	06
6.a)	A T beam having flange as (250x10)mm and web as (8x300)	10	02	03	04

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-exam - January/February 2025

	mm is used as a simply supported beam over 3m span and carries a UDL of 8kN/m. Calculate the shear stresses induced at support section and sketch its variation along the depth.				
6.b)	Obtain the shear centre for a channel section having flanges = $100x12mm$ and web = $200x10mm$. The section is subjected to a shear force of 70kN. Sketch the variation of shear flow across the section.	10	04	03	04
7.a)	A solid shaft has to carry a torque of 20 kNm. Find a suitable diameter for the shaft if the maximum stress is limited to 120 MPa and the angle of twist should not be more than 25 degrees per metre length. G = 80 GPa. If this solid shaft is to be replaced by a hollow shaft of same material, equal length and same allowable shear stress, having external diameter equal to 1.25 times the internal diameter, find the cross section dimensions of the hollow shaft. Sketch the shear stress variation for both shafts	10	02	03	06
7.b)	In a torsion test, the specimen is a hollow shaft with 50 mm external and 30 mm internal diameter. An applied torque of 1.6 kN-m is found to produce an angular twist of 0.4° measured on a length of 0.2 m of the shaft. What will be the change in length if a similar specimen is subjected only to a tensile load of 100kN? The Poisson's ratio for this material is 0.3.	10	02	03	01,06

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai - 400058.

SET-II END-SEM/RE-EXAM Examinations, January/February 2025

Total points: 100

Duration: Total Time allotted will be 3Hr.

Class: B.TECH(Civil Engineering) [Working Professional]. Semester: 11

Program: CIVIL

Name of the Course: Basics of Surveying

Course Code: PC-BTC303

Instructions:

1. All Questions are compulsory.

2. Assume suitable data if necessary and state the clearly.

Que.		Points	CO	BL	Module
No Q1	A. The following records are obtained in a traverse survey where the length and bearing of the last line were not recorded. Compute the length and bearing of line DA. Line Length(m) Bearing AB 75.50 30°24′0" BC 180.50 110°36′0" CD 60.25 210°30′0" DA ? ?	10	1,2	2	3
Q2	 B. Derive the equation for vertical distance between instrument access and central hair(V) as well as horizontal distance between instrument and staff(D) in case of angle of elevation. A. Explain different types of levelling. 	10	1,2	2	4
	B. Explain following- 1. Curvature correction 2. Refraction correction 3. Combined Correction	10	1,3	1	2
Q3	A. The following offsets were taken from a survey line to a curved boundary line: Distance(m) 0 5 10 15 20 30 40 60 80 Offset(m) 2.50 3.80 4.60 5.20 6.10 4.70 5.80 3.90 2.20 Find the area between the survey line, the curved boundary line and the	08	2,3	2	5

											and the same
		d last of		•							
ļ	•	The Tra	-	al rule							
	2)	Simpso	ns rule								
	B.	Explain	method	ds of orienta	ation in case of	plane t	able surveying.	08	2,4	2	5
	C.	Enlist o	of access	sories of pla	ne table survey	ing.		04	2,4	1	5
Q 4			ine the ivalent.	terms conto	our line, contou	ır inter	val and horizonta	1 06	1,4	1	2
		B. Stat	te the us	ses of conto	ur map.			04	1,4	1	2
		C. Des	scribe th	e methods	of interpolation	of con	tours.	10	1,4	2	2
								100	100		
Q 5	A.			ig error and	d its limitation	ns in c	case of theodolit	e 05	2,3	2	3
	traversing.						4				
	B. The following observations were taken with a tachometer fitted										
	with analytical lens, the staff being held vertically. The constant of the tachometer is 100. Calculate the reduced level of B and the										
	l			en A and B.					1		
	Inst	HI		Vertical	Staff reading	 S	Remark	7[
	St		st	angle							
	P	1.255	BM	4º20'0"	1.325, 1.825,	2.325	RL of BM=	71	}		
							255.750 m				
	P	1.255	Α	6 ⁰ 30′0"	0.850,1.600,2			15	2,3	3	2
	В	1.450	Α	$-7^{\circ}24'0$ "	1.715, 2.315,	2.915		<u> </u>			
		·,	-								
Q 6	Α.	The fo	ollowing	are the b	earings observ	ed in	traversing, with	a 15	1,3,4	3	1
~ ~							uspected. Find th				1
		amoun	t of lo	cal attracti	on at a diffe	rent st	ation, the correc	et			
							aw a sketch of th				
			suming ed angle		, BC= 90m, CI)= 60m	and show in it a	11			
	Line			FB		BB					
	AB			14	40°45′0"	Ī	318 ⁰ 15′0″	_			
	BC			4	16 ⁰ 30′0″		38000'0"	_			
	CD			20	09 ⁰ 15′0"		30°15′0″	_			
	DE				19 ⁰ 45′0"		139 ⁰ 45′0″	<u> </u>			
	DA			6	0°15′0"		240°15′0"	_}			
	В.	. Explai	in differ	ence betwee	en triangulation	and tr	aversing.	05	1,3,4	1	1

Q7	A. Explain the direct ranging and indirect ranging with suitable	10	1,2	1	1
	diagrams.				
•	B. What is substance bar in movable hair method of tachometry?	05	1,4	1	4
14	C. Explain characteristics of tachometer.	05	1,4	2	4

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Semester/Re-examination 2024-25

Program: S.Y.B.Tech_WP (Civil) LUNIT

Duration: 3 Hours

Course Code: BS-BTC301

Maximum Points: 100

Course Name: Laplace Linear Algebra and Complex Analysis

Semester: III

Note:

1. Attempt Any Five Questions

2. Answers to the sub questions should be grouped together

		Questions	Points	СО	BL	Mo dule
1	a	Test the consistency of the following system of linear equations and if possible, solve $2x+y-z=0$ $2x+5y+7z=52$ $x+y+z=9$	6	4	BL5	4
	b	Find the sum and product of Eigen values of A^{-1} , where $A = \begin{bmatrix} 2 & 1 & -3 & 8 \\ 0 & 4 & -5 & 7 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix}$	6	4	BL5	4
	С	Evaluate $(i)L\{e^{-t}\cos 4t \cdot \cos 2t\}$ $(ii)L\{t\sin(at+b)\}, \text{ where } a \text{ and } b \text{ are constants.}$	8	1	BL3	1
2	а	Find Eigen Values and Eigen Vectors of the following matrix $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$	6	4	BL5	5
	b	Under the transformation $w = \frac{1}{z}$, find the image of $ z-3 = 2$	6	3	BL2	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-examination 2024-25

	С	Reduce the following matrix to normal form and hence find its rank. $A = \begin{bmatrix} 4 & 2 & 8 & 1 \\ 5 & 1 & 7 & 2 \\ -1 & 4 & 7 & 4 \\ 2 & 8 & 3 & 8 \end{bmatrix}$	8	4	BL3	4
3	а	Prove that $u = x^4 - 6x^2y^2 + y^4$ is a harmonic function and find corresponding harmonic conjugate	6	3	BL4	3
	b	Evaluate $L^{-1}\left\{\frac{2s-3}{\left(s+1\right)^2\left(s+3\right)}\right\}$	6	1	BL5	2
	c	Verify Cayley Hamilton Theorem for the following matrix and find A^{-1} , if it exists $A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$	8	4	BL5	5
4	а	Determine constants a , b and c if $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & a \\ 2 & 1 & b \\ 2 & -2 & c \end{bmatrix}$ is orthogonal.	6	4	BL5	4
	b	Evaluate $\int_{0}^{\infty} te^{-2t} \cos 3t \ dt$	6	2	BL3	1
	С	Using Convolution Theorem, Evaluate $L^{-1}\left\{\frac{1}{(s+2)(s-1)^3}\right\}$	8	1	BL3	2
5	a	Evaluate $L\left\{\frac{\cos at - \cos bt}{t}\right\}$	6	1	BL4 ,5	2
	b	Find the map of the straight line $2x+3y=1$ by the transformation	6	3	BL4	3

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Semester/Re-examination 2024-25

			1			1
		$w = \frac{1}{2}$				
	С	Evaluate $(i) L \{\sin t \cdot \sin 2t \cdot \sin 3t\}$	8	1	BL2 BL4	1
		(ii) $L\left\{e^{-2t}f(t)\right\}$ where $L\left\{f(t)\right\} = \frac{2s-3}{s^2+s+1}$				
6	а	Evaluate $L^{-1} \left\{ \frac{2s+3}{(s-1)(s-2)(s-3)} \right\}$	6	1	BL5	2
	b	Evaluate $L\left\{\left(t+e^{-t}+\sin t\right)^2\right\}$	6	1	BL3	1
	С	For the following matrix A , find two non-singular matrices P and Q such that PAQ is in the normal form.	8	4	BL3 BL5	4
		$A = \begin{bmatrix} 2 & 1 & 4 & 3 \\ 4 & 8 & 0 & 12 \\ 5 & 4 & 9 & 9 \end{bmatrix}$				
7	а	Find the analytic function $f(z) = u + iv$ whose imaginary part is $v = x^2 - y^2 + \frac{x}{x^2 + y^2}$	5	3	BL2 BL3	3
	b	Evaluate $L^{-1}\left\{\log\left(\frac{(s+1)(s+2)}{s^2+9}\right)\right\}$	5	1	BL5	2
		Find Eigen Values and Eigen Vectors of the following matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$	10	4	BL1 BL3	5

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

END SEM/RE-EXAM EXAMINATION JAN 2025

Program: B.Tech. (Civil) ENGINEERING Swull

Duration: 3 Hours Maximum Points: 100

Course Code: BS-BTC 302

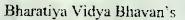
Semester: III

Course Name: Engineering Geology

NOTE: Attempt the question paper in either ascending sequence or descending sequence. Start a new question on a fresh sheet. Use of scientific calculators is permitted. Solve any 5

questions out of the 7 questions.

No.	Questions	Points	СО	BL	Modul No.
1.0	Solve the following questions.			-	-
1.	What are ox-bow lakes? Write a note on the formation of ox-bow lakes.	4			
2.	Which agent is involved in the formation of ox-bow lakes? Write a note of the erosional and depositional landforms created by this landform	6	1	2	1
3.	What are the suitable conditions of construction of (any 2):	5			
	Gravity dam Rockfill dam Earthfill dam Arch dam		3	1,3	3
4.	What are the factors that influence the selection of a dam type?	5		-,	
.2A	Solve the following questions.				2
1.	Define minerals.	2			-
2.	Samples of white coloured calcite and quartz are to be differentiated. How would	4			
	you differentiate them? You are provided with a hardness box and streak plate.				
3.	What are the properties of minerals that you will test in a hand sample? Explain	4			
0 D	it with an example.				
2 B	Match the following features with the associated rocks.	10			3
	Phaneritic, plutonic igneous rock A. Basalt				
2	Aphanitic, volcanic igneous rock B. Granite				
3	Very fine-grained sedimentary rock. C. Conglomerate				
4	Large clasts embedded in a fine-grained matrix. D. Claystone/siltstone			1,	
5	Non-Foliated metamorphic rock. E. Quartzite		1	2, 3	
3 A	Solve the following questions.			7	
1.	Explain the classification of igneous rocks based on the depth of formation.	5			3
	How does the grain size vary with respect to depth?				
2.	What are the key challenges associated with construction activities in	5			
	sedimentary terrain? Provide a detailed explanation of at least two significant				
	issues.				
3.	Draw an anticline and syncline with proper labels.	5		1,	
١.	Define faults. Identify the types of faults in the figure below:	5	,	2,3	4



SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION JAN 2025

	The state of the s	023			
	A B				
Q.4	Write a note on (any 5)	+			
1.	Principle of fossil succession.				-
2.	Principle of Catastrophism				
3.	Principle of Original horizontality				
4.	Principle of Uniformitarianism				
5. 6.	Unconformities				
0. 7.	Principle of lateral continuity				
7. 8.	Principle of inclusions Principle of grace and in the state of the st				
.4B	Principle of crosscutting relationships				
.TLJ	Identify the confined, unconfined, and perched aquifers in the diagram. Write a note on the same.	10			
	PERMEABLE LAYER 2 2	10			•
	March Lieux (Arts / Arts			1,	
			1 7	2 2	
5	Solve the following questions.		1, 2	2, 3	
5	Solve the following questions. List out the geophysical methods of geological investigation	5	1, 2	2, 3	
	Solve the following questions. List out the geophysical methods of geological investigation. What is porosity? Explain the factors affecting the porosity of rocks	5	1, 2	2, 3	
	Solve the following questions. List out the geophysical methods of geological investigation. What is porosity? Explain the factors affecting the porosity of rocks. A core run of 2 meters produces the following core piece lengths (in cm): 15.8		1, 2	2, 3	
5	Solve the following questions. List out the geophysical methods of geological investigation. What is porosity? Explain the factors affecting the porosity of rocks	5	1, 2	1,	

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEM/RE-EXAM EXAMINATION JAN 2025

	as- construction material, foundation, and aggregates.				
. 6	Solve the following questions.			-	7
1.	Which rocks are suitable for tunnel construction?	2			
2.	Comment on the stability of tunnels constructed in the conditions/attitudes of	8			
	rocks given below (any 2):				
	i.				
		1.			
3.	IV.		400	1,	-
J.	Draw a diagram on the water table with appropriate labels. What is the	10		2,	6
2.7	Solve the following questions.		3	3,4	
1.	Which type of rock is commonly seen in terrains with karst landforms? What				
	happens when this rock comes in contact with acidic water?	4			
2.	What are the different types of weathering? List them down and give a short		1		1
	explanation.	6			
3.	List down the 5 anionic groups of mineral classification and the minerals/mineral			1.2	
	groups associated with them.	10	7	1,2,	2