2.2 Third Year B.Tech. in Civil Engineering

Sem. V & VI

Academic Scheme and Syllabus

Year 2015-16

– Page - 101 - –––

			Cou	rse Plan for Ea	ich Week (H	Irs)	Evaluation (Marks)							
Sr.	G		T	.		Cara Pita	T (T (End S	emester	End Semester	D (* 1*	Term	Total
No.	Course	Code	Lectures	Laboratory	Tutorial	Credits	1 1	1 est 2	Marks	Duration (Hrs)	Weightage (%)	Practical	Work [#]	
1	Structural Analysis-II	CE301	4		2	5	20	20	100	3	60	25	25	150
2	Geotechnical Engineering-I	CE302	4	2		5	20	20	100	3	60	25	25	150
3	Building Design and Drawing	CE303	3	4		5	20	20	100	4	60	50	25	175
4	Hydraulic Engineering-I	CE304	4	2		5	20	20	100	3	60		25	125
5	Transportation Engineering-I	CE305	4		2	5	20	20	100	3	60		25	125
6	Entrepreneurship & Management	CE306	3		2	4	20	20	100	3	60		25	125
	Total		22	8	6	29	120	120			360	100	150	850

Scheme for Third Year B.Tech. in Civil Engineering (Semester - V) Year 2015-16

NOTE Test 1, Test 2 and end semester weightage marks will be added and shown as the theory marks in the mark sheet. Duration of Test 1, Test 2 is of 1 hour.

* Evaluation based on practical (if possible) / objective type test / Sketching / Mini Project.

Distribution of Term Work marks: Journal work = 10 Marks, Attendance =10, Quiz = 05 Marks.

For passing, Student must secure minimum 40% marks in each Course with all heads of passing taken together and minimum 35% marks in the end semester examination

			Cou	rse Plan for Ea	ich Week (H	Hrs)				Evaluation	ı (Marks)						
Sr.	G	End Semester End Semester Semester	I	End Semester		End Semester	*	Term	Total								
No.	Course	Code	Lectures	Laboratory	Tutorial	Credits	Test 1	t Test 2	Marks	Duration (Hrs)	Weightage (%)	Practical	Work [#]				
1	Geotechnical Engineering-II	CE351	4	2		5	20	20	100	3	60	25	25	150			
2	Design and Drawing of Steel Structures	CE352	4		2	5	20	20	100	4	60	25	25	150			
3	Hydraulic Engineering -II	CE353	4	2		5	20	20	100	3	60	25	25	150			
4	Transportation Engineering-II	CE354	4	2		5	20	20	100	3	60	25	25	150			
5	Environmental Engineering-I	CE355	3	2		4	20	20	100	3	60		25	125			
6	Theory of Reinforced & Prestressed Concrete	CE356	4		2	5	20	20	100	3	60		25	125			
	Total		23	8	4	29	120	120			360	100	150	850			

Scheme for Third Year B.Tech. in Civil Engineering, (Semester - VI) Year 2015-16

NOTE Test 1, Test 2 and end semester weightage marks will be added and shown as the theory marks in the mark sheet. Duration of Test 1, Test 2 is of 1 hour.

* Evaluation based on practical (if possible) / objective type test / Sketching / Mini Project.

Distribution of Term Work marks: Journal work = 10 Marks, Attendance =10, Quiz = 05 Marks.

For passing, Student must secure minimum 40% marks in each subject with all heads of passing taken together and minimum 35% marks in the end semester examination

Class:-T. Y. B. Tech. (Civil)	Sei	Semester V				
CODE: CE301	Course:-Structural Analysis - II					
Prerequisites	BT104, BT204, BTC25	BT104, BT204, BTC253, BTC203 BTC252, BTC228				
Deried ner week	Lecture		04			
(asch of 60 minutes)	Practical		-			
(each of oo minutes)	Tutorial	02				
		Hours	Marks			
	In Semester	01	20 X 02			
Sahama of Evaluation	End Semester*	03	100			
Scheme of Evaluation	Practical		25			
	Laboratory Work (Journal)		25			
	TOTAL		150			

*60% Weightage for end semester

Course Objectives:

The main objectives of the course are

- To introduce the students to the methods of analysis of indeterminate structures.
- To introduce the students to the plastic analysis of steel structures.
- To prepare the base for the students to study other advanced structural engineering subjects at a later stage.

Course Outcomes:

At the end of the course the students shall be able to

- Find absolute and relative deflections caused by loads, temperature changes and settlement of supports and to identify and determine the type and degree of indeterminacy in structures.
- Analyse indeterminate structures using force methods.
- Analyse indeterminate structures using displacement methods.
- Find shape factor, determine collapse load for beams.

Module No	Details	Hr s
1	General	06
	Types of structures occurring in practice and their classification. Stable and unstable structure, statically and kinematical determinacy and indeterminacy of structure. Symmetric structure, symmetrical and anti-symmetrical loads,	
	distinction between linear and non-linear behavior of material and geometric non-linearity.	
2	Deflection of statically determinate structures:	06
	Review of general theorems based on virtual work and energy methods, introduction to the concept of complimentary energy, absolute and relative deflections caused by loads, temperature changes and settlement of supports, application to beams, pin jointed frames and rigid jointed frames.	
3	Analysis of indeterminate structures by flexibility method: Flexibility coefficients and their use in formulation of compatibility equations. Theorem of three moments, Application of above methods to propped cantilevers, fixed beams, continuous beams. Simple pin jointed frames including effect of lack of fit for members. Simple rigid jointed frames with static indeterminacy up to 3Application of flexibility method to two hinged parabolic arches.	09

4	Analysis of indeterminate structures byCastiglione's theorem of least work	05
	application of the theorem to propped cantilevers, fixed beams, continuous beams.	
	Simple rigid jointed frames with static indeterminacy up to 3.	
5	Analysis of indeterminate structures by stiffness method:	08
	Stiffness coefficients for prismatic members and their use for formulation of	
	equilibrium equations, direct stiffness method, Application of the above methods	
	to indeterminate beams including the effect of settlement of supports and simple	
	rigid jointed frames with kinematic indeterminacy up to 3, rigid jointed frames	
	with inclined member but having only one translational degree of freedom in	
	addition to rotational degree of freedom.	
6	Slope deflection method, Moment distribution method. , Application of these	06
	methods to indeterminate beams including the effect of settlement of supports and	
	simple rigid jointed frames with inclined member but having only one	
	translational degree of freedom in addition to rotational degree of freedom.	
7	Introduction to plastic analysis of steel structures:	08
	Behavior of ductile material. Idealized stress strain diagram for plastic analysis.	
	Concept of plastic theory of bending, plastic hinge and plastic moment carrying	
	capacity, shape factor, determination of collapse load for single and multiple span	
	beams.	
		1

Term work:-

At least 20 (twenty) solved problems based on the above syllabus as per the module weightage shall be submitted as term work.

Text Books:-

- 1. Reddy C.S.(1999), "Basic Structural Analysis", Tata McGraw hill, ISBN 0070702764, 779 pages
- 2. Junnarkar S.B. (2013), "Structural Analysis, Vol. II" Charotar Publishers ISBN 9380358703, 986 pages
- 3. Pandit and Gupta (1999), "Structural Analysis Vol. I and Vol. II", Tata McGraw hill, ISBN 0074634933
- 4. L. S. Negi, and R. S. Jangid (1997), "Theory and Problems in Structural Analysis ", Tata McGraw Hill Education, ISBN 0074623044, 828 pages
- 5. ISBN 0138534080, 352
- 6. Baker & Heyman (1980), "Plastic Design of Steel frames", Cambridge University Press, ISBN 0521297788, 238 pages

Reference Books:-

- 1. G. Pandit and S. Gupta (2008), "Matrix Method in Structural Analysis", Tata McGraw hill, ISBN 0070667358, 612 pages
- 2. Dr. B.N. Thadani And Dr. J. P.Desai (1964), "Modern Methods in Structural Analysis", Asia Publishing House,
- 3. C. K. Wang (2010), "Intermediate Structural Analysis", Tata McGraw hill. ISBN 0070702497
- 4. James M. Gere, William Weaver (2014), "Analysis of Framed Structure", José Francisco Anunciação, ISBN 0442234856, 547 pages
- 5. D.S. Prakash Rao (1996)," Structural Analysis: A Unified Approach", Orient Blackswan ISBN 8173710279, 672 pages
- 6. Dr. A. S. Meghre, and S. K. Deshmukh (2003), "Matrix Methods of Structural Analysis", Charotar Publishing House, ISBN 8185594088, 552 pages

7. Alexander Chajes (1982), "Structural Analysis", Longman Higher Education,

Sr. No.	Examination	Module
1	T - I	1, 2 and part of 3
2	T – II	Remaining part of 3, 4 and part of module 5
3	Final exam	1 to 7

Class:-T. Y. B. Tech. (Civil)	Semester V Course:- Geotechnical Engineering – I				
CODE: CE302					
Prerequisites	BTC203, BTC252, BTC2	BTC203, BTC252, BTC205, BTC254, BTC229, BTC277			
Deried per week	Lecture		04		
(asch of 60 minutes)	Practical		02		
(each of oo minutes)	Tutorial		-		
		Hours	Marks		
	In Semester	01	20 x 02		
Scheme of Evolution	End Semester*	03	100		
Scheme of Evaluation	Practical		25		
	Laboratory Work (Journal)		25		
	TOTAL		150		

*60% Weightage for end semester

Course Objectives:

All construction that takes place, ultimately transfers the load to the ground, geotechnical engineering plays a crucial role in all civil engineering projects. The failure to carry out adequate geotechnical study often has had dramatic and expensive consequences on construction projects.

- 1. Introduce the subject of soil mechanics, rock mechanics and basic definitions of terms related to Geotechnical Engineering and the relationship between them
- 2. Classify soils, estimate soil permeability, perform seepage analysis, draw flow nets, differentiate between compaction and consolidation of soils and discuss causes of instability of soil slopes.
- 3. Calculate effective stresses and principal stresses
- 4. Introduce methods of soil investigation.

Course Outcomes:

The course will enable the students to

- 1. Explain the basic principles of soil mechanics,
- 2. Identify and quantify various engineering properties of soil either in the field, in the laboratory or both.
- 3. Analyze soil behavior under the application of loads.
- 4. Design a soil investigation programme needed before commencement of construction

Module No	Details	Hrs
1.	Introduction	08
	Definitions: soils, soil mechanics, soil engineering, rock mechanics, geotechnical engineering. Scope of soil engineering, comparison between soil & rock. Basic definitions and relationships between them. Soil as a three phase system. Determination of various soil properties such as moisture content by oven dry method, sand bath method, etc. specific gravity by density bottle method, pycnometer method, unit weight by core cutter method and sand replacement method.	

	1 cai . 2015-10	
2.	Plasticity Characteristics And Classification Of Soil	08
	Introduction to definitions of: plasticity of soil, consistency limits - liquid limit,	
	plastic limit, shrinkage limit, plasticity, liquidity and consistency indices, flow &	
	toughness indices, definitions of activity and sensitivity. Determination of: liquid	
	limit, plastic limit, shrinkage limit Use of consistency limits.	
	Introduction of soil classification particle size classification textural	
	classification unified soil classification. Indian standard soil classification	
	sustem Field identification of soils general characteristics of soils in different	
	system. There identification of sons, general characteristics of sons in different	
2		00
3.	Permeability Of Solis And Seepage Analysis	08
	Introduction to hydraulic head, Darcy's law, validity of Darcy's law.	
	Determination of coefficient of permeability, Laboratory methods: constant head	
	method, falling head method, Field methods: pumping-in test, pumping-out	
	test.Permeability aspects: permeability of stratified soils, factors affecting	
	permeability of soil.	
	Seepage analysis- Introduction, stream and potential functions, characteristics of	
	flow nets, graphical method to plot flow nets, use of flow nets.	
4.	Effective Stress Principle And Compaction Of Soils	06
	Introduction, effective stress principle, nature of effective stress, effect of water	
	table. Fluctuation of effective stress, effective stress in soils saturated by capillary	
	action, seepage pressure, quick sand condition.	
	Compaction of soils - Introduction theory of compaction laboratory	
	determination of ontimum moisture content and maximum dry density	
	Compaction in the field compaction specification and field control	
5	Consolidation of soils	06
5.	Introduction comparison between compaction & consolidation initial primary &	00
	secondary consolidation spring analogy for primary consolidation consolidation	
	test results basic definitions. Terzaghi's theory of consolidation, final sattlement	
	of soil deposite consolidation sottlements one dimensional method secondary	
	on soli deposits, consolidation settlement. one-dimensional method, secondary	
(0(
0.	Snear strengtn	06
	Principal planes parallel to the coordinate axes, Mohr's circle, important	
	characteristics of Mohr's circle, Mohr-Coulomb theory, types of shear tests,	
	direct shear test, merits of direct shear test, tri-axial compression tests, test	
	behaviour of UU, CU and CD tests, relation between major and minor principal	
	stresses, unconfined compression test, vane shear test.	
7.	Stability of slopes and Soil exploration	06
	Introduction to slope stability, different factors of safety, types of slope failures,	
	analysis of finite and infinite slopes, wedge failure, Swedish circle method,	
	friction circle method, stability numbers and charts, applicability of different	
	methods, software for slope stability.	
	Soil exploration - Introduction methods of investigation soil samplers and	
	sampling number and disposition of trial nits and borings penetrometer tests	
	borehole logs geophysical methods	
	oorenore 10gs, geophysical methods.	
Det		
Practica	I Examination:-	
Practical	examination will be based on the experiments conducted.	

List of Practicals:- (at least ten to be performed)

- 1 Field density using core cutter method
- 2 Field density using sand replacement method
- 3 Natural moisture content using oven drying method
- 4 Field identification of fine-grained soils
- 5 Specific gravity of soil grains
- 6 Grain size distribution by sieve analysis
- 7 Grain size distribution by hydrometer analysis
- 8 Consistency limits liquid limit
- 9 Consistency limits plastic limit
- 10 Consistency limits shrinkage limit
- 11 Permeability tests using constant test method
- 12 Permeability tests using falling head method
- 13 Compaction test: standard proctor test.
- 14 Compaction test: modified proctor test
- 15 Relative density

Term work:

Report on experiments performed as detailed above and assignments including problems based on the above syllabus shall be submitted as term work.

Recommended Books:

- 1. Alam Singh (2012); "Soil Engineering in Theory and Practice (Vol. -1)", CBS Publishers & Distributors, New Delhi. ISBN-13: 979-8123902769. 325p.
- 2. V. N. S. Murthy (2002) "Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering", CRC Press. ISBN-13: 9780824708733. 1056p.
- 3. Taylor. D. W (2013); "Fundamentals of Soil Engineering", Literary Licensing, LLC. ISBN-13: 978-1258766924. 714p.
- 4. Robert D. Holtz (2011) "An Introduction to Geotechnical Engineering" Pearson. ISBN-13: 978-0132496346. 853p.
- 5. Craig, R. F. (2004); "Soil Mechanics", CRC Press. ISBN-13: 978-0415327022. 464p.
- 6. Lambe T. W. & Whitman R. V (2008); "Soil Mechanic", John Wiley & Sons. ISBN-13: 9788126517794. 572p.
- K. Terzaghi (1996); "Soil Mechanics in Engineering Practice", John Wiley & Sons. ISBN-13: 9780471086581. 549p.
- 8. Relevant Indian Standard Specifications & Codes, BSI Publications, New Delhi.

Sr. No.	Examination	Module
1	T – I	1, 2
2	T – II	3, 4
3	Final Examination	1 to 7

Class:-T. Y. B. Tech. (Civil)	Se	mester V	
CODE: CE303	Course:- Buildin	g Design and	Drawing
Prerequisites	BTC203, BTC252, BTC2	05, BTC254, I	BTC229, BTC277
Deried per week	Lecture		3
(asch of 60 minutes)	Practical		4
(each of oo minutes)	Tutorial		-
		Hours	Marks
	In Semester	01	20X02
Scheme of Evoluction	End Semester*	04	100
Scheme of Evaluation	Practical	-	25
	Laboratory Work (Journal)	-	50
	TOTAL		175

* 60% Weightage for end semester

Course Objectives:

Students will learn to:

- 1. Interpret various types of building drawings.
- 2. Comprehend building rules, regulation and bylaws, Building codes.
- 3. Acquire the knowledge of the principles of planning of residential and public (non-residential) buildings, sun path diagram & its importance.
- 4. Prepare and analyze plans of various types of residential building considering the functional requirements.
- 5. Prepare submission drawings, working drawings, detailed drawings for the planned buildings.

Course Outcomes:

The students will be able to

- 1. Understand & interpret the drawings.
- 2. Transform their ideas to create plans and designs for various types of building.
- 3. Convert design parameters, process details into 2D and 3D views.
- 4. Supervise various construction processes and execute civil engineering structures such as buildings, roads, railways, dams, bridges.

Module No.	Details	Hrs.
1	Planning approach	8
	Basic areas in residential buildings-Process of planning-family requirement	
	& analysis-conceptual plan outlines-princiles and techniques for functional	
	planning-planning for service & landscaping-concept of art & creativity-	
	role of architect & engineer-structural system & functional classification of	
	buildings-residential building forms.	
2	Building Regulations	4
	Building byelaws-provisions in developed developing urban areas-	
	Introduction of Building code (NBC 2005)-plan approval process-	
	understanding certification methods (TERI, LEEDS) for green buildings.	
3	Planning for Residential Buildings	8
	Plan preparation for residential units-structure, space forms and analysis-	
	activity space-elements of human scale-size & dimensions decisions-	
	furniture layouts.	

4	Planning of Public (non-residential) Buildings	8
	Approach for activity analysis for public buildings,	
	hostels, school, offices, primary health care centers-Space norms, basic	
	areas, functional setting areas	
5	Archiectural Composition	2
	Mass composition-princiles of elevation development-techniques-impacts	
	of colour & structure	
6	Town Planning	5
	Concept of built environment -ancient planning in india-objectives &	
	principles-origin & growth of town-satellite town-ribbon development-	
	surves-master plan-road system-zoning-green belt-slums-replanning	
	existing towns	
7	Building Drawing	5
	Key plan-site plan& working drawings-elements of perspective drawings-	
	foundation & plumbing layouts.	

Practical Examination (Sketching & Lab work):-

Practical examination will be based on the entire syllabus. The examination shall consist of drawing sketches and oral based on the syllabus.

Term Work:

Term work shall comprise of

- A₃ Ssize practice sheet which includes, lines, their thicknesses and application in building drawing and line plan for any type of building.
- For each type of structure (Load Bearing structure & R.C.C. structure) two A₁ size drawing sheets must be prepared.
 - 1. One drawing sheet will have include ground floor plan, elevation section, site plan, construction notes, door-windows schedule, area statement.
 - 2. Second drawing sheet will have include foundation plan showing diagonal check sections of foundation, roof/terrace plan, roof section of terrace showing water proof details, section of door-window, sectional view of staircase, column schedule.
 - 3. Drawing sheets for residential building must be hand drawn.
 - 4. Drawing for public building must be completed by AutoCad software.
 - 5. For each type of public building, one report must be submitted.
- A₁ size drawing sheet for perspective view of above mention structures.

Recommended Books:

- 1. M.G. Shah, C.M. Kale, S.Y. Patil (2011); "Building Drawing with an Integrated Approach to Built Environment" McGraw Hill Education (India) Private Limited; ISBN-13: 978-0071077873. 408p.
- 2. V.B. Sikka (2013); "A Course in Civil Engineering Drawing" S.K. Kataria & Sons; ISBN-13: 978-9350142721. 550 p.
- 3. Dr.N.Kumara Swamy & A.Kameshwara Rao (2012); "Building Planning & Drawing" Charotar Publishing House. ISBN-13: 978-9380358581. 434 p
- 4. Rangwala (2013); "Town Planning" Charotar Publishing House Pvt. Ltd. ISBN-13: 978-9380358680. 344 p

Sr. No.	Examination	Module
1	T – I	1,2
2	T – II	3, 4
3	Final Examination	1 to 7

Class:-T. Y. B. Tech. (Civil)	Semester V		
CODE: CE304	Course:- Hydr	aulic Engineer	ing – I
Prerequisites	BTC2	229, BTC277	
Deried per week	Lecture	04	
(asch of 60 minutes)	Practical	02	
(each of oo minutes)	Tutorial		
		Hours	Marks
	In Semester	01	20 x 02
Sahama of Evaluation	End Semester*	03	100
Scheme of Evaluation	Practical		
	Termwork		25
	TOTAL		125

*60% Weightage for end semester

Course Objectives:

- 1. To describe the types of flow and pipe flow system.
- 2. To discuss the concept of fluid dynamics and its applications.
- 3. To exemplify the fundamentals of impulse momentum principle
- 4. To explain the working of various hydraulic machines such as hydraulic turbines, centrifugal pumps, hydraulic rams, hydraulic press, accumulator, intensifier, crane and lift.

Course Outcomes:

At the end of this course, students will be able to:

- 1. Use the fundamentals of pipe flow, losses in pipe and analysis of pipe network in various conditions.
- 2. Differentiate between types of flow.
- 3. Implement the dynamics and impulse momentum principle to hydraulic machines.
- 4. Design the components of hydraulic turbines and centrifugal pump.

Module No	Details	Hrs
1.	Flow through Pipes:	08
	Darcy-Weisbach's equation, major and minor losses, Hydraulic gradient and total energy line. Pipes in series and parallel. Power transmission through pipes and	
	nozzles. Siphon pipe. Water hammer in pipes and its control measures. Analysis	
	of pipe network: Hardy cross method, three reservoir problem.	
2	Dynamics of Fluid flow:	06
	Momentum and moment of momentum principle, its application, forces on pipe	
	bends, sprinklers	
3	Impact of Jets and jet propulsions:	08
	Jet striking flat plates, stationary and moving normal, inclined plates, curved	
	vanes, series of plates and vanes mounted on wheel. Jet propulsion of ships.	
4	Hydraulic Turbines:	08
	General layout of Hydroelectric power plant, Heads and efficiencies of turbines,	
	Classification, working of Impulse turbine, Pelton wheel, Reaction turbine,	
	Francis turbine, Kaplan turbine, draft tube theory, specific speed, unit quantities, cavitation, characteristic curves.	

	Year: 2015-16	
5	Centrifugal Pumps:	08
	Work done, Head and efficiency, priming, minimum starting speed, pumps in	
	series and parallel,	
	multistage pumps, specific speed, model testing, characteristic curves, cavitation.	
6	Hydraulic Machinery:	04
	Hydraulic Ram, press, accumulator, intensifier, crane and lift.	
7	Laminar Flow:	06
	Reynold's experiment, Critical velocity, Steady laminar flow through circular	
	pipes, annulus,	
	Parallel plates, stationery and moving, kinetic energy correction factor,	
	momentum correction factor.	
List of e	xperiments: (preferably Eight to be performed)	
1. Losses	s in pipes	
2. Lamin	ar flow through pipe	
3. Reyno	ld's experiment	
4. Impac	t of jet, Flat plate, inclined plate, curved vanes	
5. Perfor	mance of Pelton turbine	
6. Perfor	mance of Francis Turbine	
7. Perfor	mance of Kaplan Turbine	
8. Perfor	mance of Centrifugal pumps	
9. Pumps	in series and parallel	
10. Perfo	rmance of Hydraulic Ram.	
Town		
Deport of)FK: n avnoriments performed as detailed above and assignments including problems base	don
the above	a syllabus shall be submitted as term work	u on
The distr	ibution of term work marks will be as follows:	
Reports (of experiments performed and assignments	
Attendan	Duiz : 10 marks	
Attenual		
Recomm	ended Books:	
1. D	r. P.N. Nodi (2009); "Hydraulics and Fluid Mechanics" Standard Book House I	SBN-
1	3: 978-8189401269. 250p	
2. D	r. Jain A.K (2010); "Fluid Mechanics" Khanna Publishers. ISBN-13: 978-81740919	49
	(2008): "Elow in Open Channels" 978-0070086051 576p	
4. S	ubramanaya K (2010); "Fluid mechanics & hydraulic Machines". McGraw	Hill

- Education (India) Private Limited. ISBN-13: 978-0070699809
- 5. Nagarathnam S. (1984); "Fluid Mechanics:" Khanna Publishers.637p.

Sr. No.	Examination	Module
1	T-1	Module 1 and 2
2	T-2	Module 3 and 4
3	Final Examination	Module 1 to 7

Class:-T. Y. B. Tech. (Civil)	Semester V		
CODE: CE305	Course:-Transportation Engineering - I		
Prerequisites	BTC204, BTC253, BTC230, BTC278		
Deriod per week	Lecture		04
(asch of 60 minutes)	Practical	-	
(each of oo minutes)	Tutorial	02	
		Hours	Marks
	In Semester	01	20 X 02
Scheme of Evolution	End Semester*	03	100
Scheme of Evaluation	Practical		
	Laboratory Work (Journal)		25
	TOTAL		125

*60% Weightage for end semester

Course Objectives:

- 1. To illustrate modes of transportation, advantage and disadvantage.
- 2. To discuss and Compute orientation of Runway & taxiway, its geometric design elements, drainage, Gate and Gate positions, marking and lighting on taxiway, aircraft parking system, Terminal area & airport layout.
- 3. To summarize cross section of permanent way and track components, and Compute number of sleepers, fish plate, fish bolt, geometric elements of railway, Points and crossing.
- 4. To explain railway stations and yards, layout of track, position of signals, train movement. Methods of construction, material selection, maintenance of tracks.

Course Outcomes:

At the end of this course, the students will be able

- 1. To Analyze and Design orientation of Runway & taxiway, its geometric design, drainage, Gate and Gate positions and able to prepare project report for new airport construction.
- 2. To acquire the knowledge of cross section of permanent way, function of each component and Geometric Design of Railway track including turnout signals.
- 3. To execute construction and maintenance of stations, yards and railway tracks.

Module No	Detatails	Hrs
01	Introduction:	04
	Role of transportation in Society, objectives of transportation system, different types of modes, planning & coordination of different modes for Indian conditions.	
02	Airport Engineering	12

	1 cai . 2013-10	
	i Aircraft component parts and its function, aircraft characteristics and their influence on airport planning.	
	ii Airport planning: topographical and geographical features, existing airport in vicinity, air traffic characteristics, development of new airports, factors affecting airport site selection	
	iii Airport obstruction: zoning laws, classification of obstructions, imaginary	
	surfaces, approach zones, turning zones.	
	Airport layout: runway orientation, wind rose diagrams, basic runway length, corrections for runway length, airport classification, geometric design, airport capacity, runway configuration, taxiway design, geometric standards, exit taxiways, holding aprons, location of terminal buildings, aircraft hangers and parking.	
	v Airport marking and lighting marking and lighting of runways, taxiway, approach	
	and other areas. Terminal area & airport layout: terminal area, planning of	
	terminal buildings, apron: size of gate position, number of gate position, aircraft	
02	parking system, hanger, general planning considerations and blast considerations.	04
03	i Air traine control: Air traine control alus, en-route alus, landing alus.	04
	design.	
	iiiAirport airside capacity and delay: runway capacity and delays, practical hourly	
	capacity, practical annual capacity, computation of runway system, runway gate	
	capacity, taxiway capacity. Air traffic forecasting in aviation: forecasting methods,	
<u></u>	forecasting requirement and applications.	
04	Railway Engineering	09
	of gauges	
	ii Cross section of permanent way and track components, sleeper – functions and	
	types, sleeper density, ballast functions and different ballast materials.	
	iii Rails: coning of wheels and tilting of rails, rail cross sections, wear and creep of	
	rails, rail fastenings.	
	Merits of rail transportation, railway gauges and problems due to non uniformity of	
05	gauges.	00
05	cant deficiency.	09
	ii Points and crossing: design of turnouts, description of track junctions, different	
	types of track junctions.	
	iii Yards: details of different types of railway yards and their functions.	
0.6		01
06	1 Signalling and interlocking: classification of signals, interlocking of signals and points control of train movement	06
	ii Construction and maintenance of railway track methods of construction material	
	requirements, maintenance of tracks and traffic operations.	
	iii Modernization of track and railway station for high speed trains special measures	
	for high speed track.	
7	Introduction of water transportation system, harbors and docks, port facilities.	04

Term work:

Report on minimum 10 assignments including problems based on the above syllabus shall be submitted as term work. The distribution of term work marks will be as follows:

The distribution of term work marks will be as follows.		
Reports of experiments performed and assignments	:	15 marks
Attendance/ Quiz	:	10 marks

Recommended Books:

- 1. Saxena S C and Arora S P (2010); "A text book of Railway Engineering", Dhanpat Rai and Sons, New Delhi. ISBN-13: 978-8189928834.
- 2. Khanna & Arora (1999); "Airport Planning and Design" Nemchand Bros, Roorkee. ISBN-13: 978-8185240688. 390p
- 3. Agarwal M. M (1984); "Indian Railway Track: Design, Construction, Maintenance and Modernisation", Suchdeva press New Delhi.
- 4. Bindra S P (2012); "Docks and Harbour Engineering", Dhanpat Rai and Sons. ISBN-13: 978-8189928858.
- 5. R Shrinivas (2013); "Harbour, Dock and Tunnel Engineering" Charotar Publishing House. ISBN-13: 978-9380358741. 422p.
- Sehgal S E, Bhanot K L (1980); "A Text Book on Highway Engineering and Airports", S. Chand & Co.544p
- 7. Horonjeff and Mckelrey (1994); "Planning and Design of Airport", McGraw-Hill Professional. ISBN-13: 978-0070453456. 848p.
- 8. Quinn A D (1991); "Design & Construction of Ports and Marine Structures", McGraw-Hill Inc., US. ISBN-13: 978-0070510647. 608p.
- 9. Rao G V (1992); "Airport Engineering", Tata McGraw-Hill Publishing Company ISBN-13: 9780074603178. 165p.

Sr. No.	Examination	Module
1	T-1	Module 1 and 2
2	T-2	Module 3 and 4
3	Final Examination	Module 1 to 7

Class:-T. Y. B. Tech. (Civil)	Semester V			
CODE: CE306	Course:- Entrepreneurship and Management			
Prerequisites	BTC204, BTC253, BTC230, BTC278			
Daried ner week	Lecture	0	3	
(anch of 60 minutes)	Practical	_		
(each of oo minutes)	Tutorial	02		
		Hours	Marks	
	In Semester	01	20 X 02	
Sahama of Evaluation	End Semester*	03	100	
Scheme of Evaluation	Practical			
	Laboratory Work (Journal)		25	
	TOTAL		125	

*60% Weightage for end semester

ENTREPRENEURSHIP AND MANAGEMENT

An engineer applies mathematics, science, and systems-integrative approaches to conceive, design, build, and operate useful objects or processes; whereas an entrepreneur assumes the tasks of organisation and management as well as the risks of new-project creation or new-venture startup. In today's advanced world, there's a need of engineers as entrepreneurs.

Course Objectives:

- 1. To understand contemporary leadership, entrepreneurship and management concepts, principles and theories, individual, group and organizational leadership principles.
- 2. To understand the role of human behavior and motivation in performance
- 3. To study the nature of entrepreneurial work risks, rewards, challenges.
- 4. To experience situations and assignments where leadership, entrepreneurial and managerial thinking is needed for success.
- 5. To instill a creative, risk-taking attitude on challenges.
- 6. To gain working understanding of fundamental business framework
- 7. To complete a new product "launch" project, including definition and design, strategic planning, business plan, funding analysis.

Course Outcomes:

The course will enable the students:

- 1. To understand their personality type and leadership style.
- 2. To assess human behavior and motivation in performance.
- 3. To carry out a team project that will make them understand the product concept developmentincluding definition and design, strategic planning, business plan, funding analysis, selection, and "launch".

Module No	Details	Hrs
1.	Definitions of entrepreneurship, concept and characteristics of entrepreneur and entrepreneurship, an ideal entrepreneur, qualities of an entrepreneur, aspects of entrepreneurship, environment for entrepreneurship	04

2. The entrepreneurial culture : elements of culture, business culture and culture of society, entrepreneurial culture, cultural change, socio-economic origins of entrepreneurship, barriers to entrepreneurship, factors affecting entrepreneurship 2. Classification depending on type of business, technology, motivation, growth, stages of development. 3. Entrepreneurial traits and motivation: initiative, entrepreneurial skills, entrepreneurial functions Project development Project development Project development Project development opicet formulation, SWOT analysis, project report. Stoles of analysis: time value of money, compounding & discounting, break-even analysis, payback period, net present value, social cost-benefit analysis Sources & types of finance Present scenario of Indian industry and entrepreneurs, government policies promoting entrepreneurship, institutions in aid of entrepreneurs, finance for entrepreneurs, sources and types of finance, small scale industry, safet yules & regulations for construction industria, selection of type of own organization, ownership types: sole proprietorship, partnership, private company, ublic limited company Project accounting: generally accepted accounting principles, book keeping, double entry system and ledger, preparation of income statement and balance sheet Management: concept of management thought, brief description of contributions by Fredrick Taylor, Henry Fayol, Elton Mayo and Gilbreth, Principles of organization, forms of organization: line, line & staff, functional and matrix Term work:		1 cui: 2012 10	
Classification depending on type of business, technology, motivation, growth, stages of development. 3. Entrepreneurial traits and motivation: initiative, entrepreneurial skills, entrepreneurial functions Project development Project development Project identification, project Formulation, SWOT analysis, project report. ISO certification & its importance, search for an idea, preliminary screening, project appraisal: market, technical, financial, economical, social, ecological, organizational. Tools of analysis: time value of money, compounding & discounting, breakeven analysis, payback period, net present value, social cost-benefit analysis Sources & types of finance Present scenario of Indian industry and entrepreneurs, government policies promoting entrepreneurship, institutions in aid of entrepreneurs, finance for entrepreneurs, sources and types of finance, small scale industry safety rules & regulations for construction industries, selection of type of own organization, ownership types: sole proprietorship, partnership, private company, public limited company Project accounting: generally accepted accounting principles, book keeping, double entry system and ledger, preparation of income statement and balance sheet Management: concept of management, objectives, basic functions of management, emergence of management thought, brief description of contributions by Fredrick Taylor, Henry Fayol, Elton Mayo and Gilbreth, Principles of organization, forms of organization: line, line & staff, functional and matrix Term work: Report on minimum 10 assignments including problems based on the above syllabus sha submitted as term work.	2.	The entrepreneurial culture : elements of culture, business culture and culture of society, entrepreneurial culture, cultural change, socio-economic origins of entrepreneurship, barriers to entrepreneurship, factors affecting entrepreneurship	05
Project development Project: stages of project, project development cycle, life cycle of project, ISO certification & its importance, search for an idea, preliminary screening, project identification, project Formulation, SWOT analysis, project report. Project appraisal: market, technical, financial, economical, social, ecological, organizational. Tools of analysis: time value of money, compounding & discounting, breakeven analysis, payback period, net present value, social cost-benefit analysis Sources & types of finance Present scenario of Indian industry and entrepreneurs, government policies promoting entrepreneurship, institutions in aid of entrepreneurs, finance for entrepreneurs, sources and types of finance, small scale industry: safety rules & regulations for construction industries, selection of type of own organization, ownership types: sole proprietorship, partnership, private company, public limited company 6. Management: concept of management, objectives, basic functions of management, emergence of management thought, brief description of contributions by Fredrick Taylor, Henry Fayol, Elton Mayo and Gilbreth, Principles of organization, forms of organization: line, line & staff, functional and matrix Term work: Report on minimum 10 assignments including problems based on the above syllabus sha submitted as term work. The distribution of term work marks will be as follows: 15 marks Report on distribution of term work marks will be as follows: 10 marks Recommended Books: 1 Prasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgeting lumented will be a Graw Hill 53 predices: Preparation, Appraisal, Budgeting lumentereuta	3.	Classification depending on type of business, technology, motivation, growth, stages of development. Entrepreneurial traits and motivation: initiative, entrepreneurial skills, entrepreneurship: sources of supply & motivation, Growth of entrepreneurs, entrepreneurial functions	07
Present scenario of Indian industry and entrepreneurs, government policies promoting entrepreneurship, institutions in aid of entrepreneurs, finance for entrepreneurs, sources and types of finance, small scale industries related to civil engineering, steps for starting a small scale industry, safety rules & regulations for construction industries, selection of type of own organization, ownership types: sole proprietorship, partnership, private company, public limited company Project accounting: generally accepted accounting principles, book keeping, double entry system and ledger, preparation of income statement and balance sheet Management: concept of management, objectives, basic functions of management, emergence of management thought, brief description of contributions by Fredrick Taylor, Henry Fayol, Elton Mayo and Gilbreth, Principles of organization, forms of organization: line, line & staff, functional and matrix Term work: Report on minimum 10 assignments including problems based on the above syllabus sha submitted as term work. The distribution of term work marks will be as follows: Reports of experiments performed and assignments : 15 marks Attendance/ Quiz : 10 marks Recommended Books: : 10 marks 1. Prasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgeting Implementation" Tata Mc Grow Hill 542p	4.	Project development Project: stages of project, project development cycle, life cycle of project, ISO certification & its importance, search for an idea, preliminary screening, project identification, project Formulation, SWOT analysis, project report. Project appraisal: market, technical, financial, economical, social, ecological, organizational. Tools of analysis: time value of money, compounding & discounting, break- even analysis, payback period, net present value, social cost-benefit analysis Sources & types of finance	06
6. Project accounting: generally accepted accounting principles, book keeping, double entry system and ledger, preparation of income statement and balance sheet Management: concept of management, objectives, basic functions of management, emergence of management thought, brief description of contributions by Fredrick Taylor, Henry Fayol, Elton Mayo and Gilbreth, Principles of organization, forms of organization: line, line & staff, functional and matrix Term work: Report on minimum 10 assignments including problems based on the above syllabus sha submitted as term work. The distribution of term work marks will be as follows: Reports of experiments performed and assignments : 15 marks Attendance/ Quiz : 10 marks Recommended Books: : 10 marks 1. Prasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgeting Implementation" Tata Mc Gray Hill 543p	5.	Present scenario of Indian industry and entrepreneurs, government policies promoting entrepreneurship, institutions in aid of entrepreneurs, finance for entrepreneurs, sources and types of finance, small scale industries related to civil engineering, steps for starting a small scale industry, safety rules & regulations for construction industries, selection of type of own organization, ownership types: sole proprietorship, partnership, private company, public limited company	
Management:concept of management, objectives, basic functions of management, emergence of management thought, brief description of contributions by Fredrick Taylor, Henry Fayol, Elton Mayo and Gilbreth, Principles of organization, forms of organization: line, line & staff, functional and matrixTerm work:Report on minimum 10 assignments including problems based on the above syllabus sha submitted as term work.The distribution of term work marks will be as follows: Reports of experiments performed and assignmentsExports of experiments performed and assignmentsAttendance/ QuizI. Prasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgeting Implementation" Tata Mc Graw Hill, 543p	6.	Project accounting: generally accepted accounting principles, book keeping, double entry system and ledger, preparation of income statement and balance sheet	
Term work: Report on minimum 10 assignments including problems based on the above syllabus sha submitted as term work. The distribution of term work marks will be as follows: Reports of experiments performed and assignments : 15 marks Attendance/ Quiz : 10 marks Recommended Books: 1. Prasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgeting Implementation" Tata Mc Graw Hill 543p	7.	Management: concept of management, objectives, basic functions of management, emergence of management thought, brief description of contributions by Fredrick Taylor, Henry Fayol, Elton Mayo and Gilbreth, Principles of organization, forms of organization: line, line & staff, functional and matrix	05
Report on minimum 10 assignments including problems based on the above syllabus sha submitted as term work. The distribution of term work marks will be as follows: Reports of experiments performed and assignments : 15 marks Attendance/ Quiz : 10 marks Recommended Books: 1. Prasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgeting Implementation". Tata Mc Graw Hill, 543p	Term wo	ork:	
Recommended Books: 1. Prasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgeting Implementation" Tata Mc Graw Hill 543p	Report of submitted The distr Reports of Attendan	n minimum 10 assignments including problems based on the above syllabus sh d as term work. ibution of term work marks will be as follows: of experiments performed and assignments : 15 marks ace/ Quiz : 10 marks	all be
 Vasant Desai (2011); "Dynamics of Entrepreneurial Development & Management Himalaya Publishing House. ISBN-13: 978-9350244548. Koontz, O'Donell & Weirich (1980); "Management", McGraw Hill. IS 	Recomm 1. Pri Ir 2. V H 3. K	nended Books: Tasanna Chandra (1986); "Projects: Preparation, Appraisal, Budgetin, mplementation", Tata Mc Graw Hill. 543p. Yasant Desai (2011); "Dynamics of Entrepreneurial Development & Managen Iimalaya Publishing House. ISBN-13: 978-9350244548. Koontz, O'Donell & Weirich (1980); "Management", McGraw Hill. I	g & nent", SBN-

13: 9780070353770. 895p.4. R. Hisrich & M. P. Peters (2013); "Entrepreneurship", Tata Mc Graw Hill. ISBN-

13: 9780071326315. 5	587p
----------------------	------

- 5. Entrepreneurship Development, Colombo plan Staff College for Technical Education, Tata Mc Graw Hill
- 6. Prasanna Chandra (2010); "Finance Sense", Tata McGraw-Hill Education. ISBN-13: 9780070680203. 516p.

Sr. No.	Examination	Module
1	T – I	1,2
2	T – II	3,4
3	Final Examination	1 to 7

Third Year B.Tech. in Civil Engineering

Sem. VI Academic Scheme and Syllabus Year 2015-16

Class:-T. Y. B. Tech. (Civil)	Seme	ster VI	
CODE: CE351	Course:- Geotechn	ical Engineerin	g - II
Prerequisites	CH	2302	
Deried ner week	Lecture	0	4
(asab of 60 minutes)	Practical	02	
(each of 60 minutes)	Tutorial	-	
		Hours	Marks
	In Semester	01	20 X 02
Scheme of Evoluction	End Semester*	03	100
Scheme of Evaluation	Practical		25
	Laboratory Work (Journal)		25
	TOTAL		150

*60% Weightage for end semester

The students are exposed to apply the theory learnt in Geotechnical Engineering-I to the practical applications. They are introduced to the topics of design of retaining walls, bearing capacity of shallow foundations, pile foundations, etc. They are required to perform the practicals to determine the relevant parameters required to be used in the above applications.

Course Objectives:

- 1. Description of various earth pressure theories, design and analysis of stability of various types of earth retaining structures
- 2. Estimation of bearing capacity of shallow foundations by various theories.
- 3. Assessment of the need for pile foundations and determination of their load carrying capacity.
- 4. Explaination of basic design principles of flexible retaining system, open cuts and reinforced soil.

Course Outcomes:

- 1. Based on the understanding of soil properties and characteristics studied in GE-I, the students will be able to predict soil behavior under the application of loads and come up with appropriate solutions to foundation design queries.
- 2. The students will also be able to analyze the stability of natural slopes and if found unsafe, recommend the use of and design the suitable retaining structures or reinforced earth walls.

Module No	Details	Hrs		
1.	Lateral earth pressure theories	10		
	Introduction: applications of earth pressure theories, different types of earth			
	pressures - at rest, active and passive pressures. Rankine's earth pressure			
	theory, active earth pressure and passive earth pressure for horizontal and			
	inclined backfill including the direction of failure planes for cohesionless and			
	cohesive soils.Coulomb's wedge theory: Coulomb's active pressure in			
	cohesionless soils, expression for active pressure, Coulomb's passive earth			
	pressure.Rebhann's construction for active pressure, Culmann's graphical			
	solutions for active pressure.			
2.	Earth retaining structures	06		

	Rigid and flexible retaining structures, stability analysis of retaining walls,	
	cantilever retaining walls, deflection, bending moment and earth pressure	
	diagrams for cantilever sheet piles, computation of embedment depth,	
	construction details, drainage and wall joints.	
3.	Bearing capacity of shallow foundations	10
	Definitions of ultimate bearing capacity, gross, net and safe pressures,	
	allowable bearing pressure, types of shallow foundations, modes of failures.	
	Bearing capacity theories - concept behind derivation of equation, general	
	bearing capacity equation, bearing capacity equations for square and circular	
	footings, factors influencing bearing capacity, performance of footings in	
	different soils, Vesic's chart, ultimate bearing capacity in case of local shear	
	failure. IS code recommendations. Plate load test in detail with reference to IS	
	1888 and its applications and estimation of settlements.	
4.	Axially loaded pile foundations	10
	Introduction to pile foundations, necessity of pile foundation, classification of	
	piles, construction methods of bored piles, concrete bored piles, driven cast	
	in-situ piles. Pile capacity based on static analysis, piles in sand, piles in clay,	
	dynamic methods and their limitations, in-situ penetration tests and pile load	
	test as per IS 2911 specifications, negative skin friction. Pile groups, ultimate	
	capacity of groups, settlement of pile groups in sand and in clays as per IS	
	2911 and critical depth method.	
5.	Underground conduits	04
	Classes of underground conduits, load on a ditch conduit, settlement ratio,	
	ditch condition and projection condition, imperfect ditch conduit.	
6.	Flexible Retaining Structures	04
	Introduction to sheet pile walls, earth pressure diagrams for cantilever sheet	
	pile walls in granular and cohesive soils	
7.	Reinforced earth	04
	The mechanism, reinforcement (elements), reinforcement-soil interaction,	
	applications, reinforced soil embankments/walls.	

Practical examination will be based on the experiments conducted.

List of practicals:(At least five to be performed)

- 1. Consolidation test
- 2. Triaxial test (UU)
- 3. Direct shear test
- 4. Unconfined compression strength test
- 5. California bearing ratio test
- 6. Vane shear Test
- 7. Determination of free swell index

Term work:-

Report on experiments performed as detailed above shall be submitted as term work

Recommended Books:-

- 1. Alam Singh (2012); "Soil Engineering in Theory and Practice (Vol. -1)", CBS Publishers & Distributors, New Delhi. ISBN-13: 979-8123902769. 325p.
- 2. V. N. S. Murthy (2002) "Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering", CRC Press. ISBN-13: 9780824708733. 1056p.
- 3. K. Terzaghi (1996); "Soil Mechanics in Engineering Practice", John Wiley & Sons. ISBN-13: 9780471086581. 549p.
- 4. R. B. Peck (1953); "Foundation Engineering", John Wiley & Sons. 410p.
- 5. A. Kaniraj, Shenbaga R. Kaniraj (1988) "Design aids in Soil Mechanics and Foundation Engineering" Tata McGraw Hill, New Delhi. ISBN-13: 9780074517147. 698p.
- 6. N. V. Nayak (1982) "Foundation Design Manual", Dhanpat Rai Publications, New Delhi
- 7. Relevant Indian Standard Specifications & Codes, BIS Publications, New Delhi.

Sr. No.	Examination	Module
1	T – I	1, 2
2	T – II	3, 5
3	Final Examination	1 to 7

Class:-T. Y. B. Tech. (Civil)	Se	mester VI	
CODE: CE352	Course:-Design & I	Drawing of Stee	l Structures
Prerequisites	BTC203, BTC252, BTC228, CE301		CE301
De nie din en erre ele	Lecture		04
(aach of 60 minutes)	Practical		-
(each of oo minutes)	Tutorial		02
		Hours	Marks
	In Semester	01	20 X 02
Scheme of Evolution	End Semester*	04	100
Scheme of Evaluation	Practical		25
	Laboratory Work (Journal)		25
	TOTAL		150

*60% Weightage for end semester

Course Objectives:

- To introduce behavior and design of simple steel structures according to limit state design concept.
- To have the basic knowledge about the design and failure mode of steel structural members.

Course Outcome:

The course will enable the students to:

- 1) Design simple structural elements using IS-800-2007:
 - a) Tension members
 - b) Compression members
 - c) Flexural members
 - d) Slab base & Gusseted Base
 - e) Bolted and Welded connections
- 2) Design simple structural systems using IS-800-2007 & IS-875-1987 a)truss (subjected to wind load)
 - b)G+3 steel building

Module No	Details	Hrs	
1	Introduction to types of steel, mechanical properties of steel, advantages of steel	09	
	as structural material, design philosophies of Working Stress Method (WSM) and		
	Limit State Method (LSM)		
	Limit state method, limit state of strength and serviceability (deflection,		
	vibration, durability, fatigue, fire), characteristics and design loads, Classification		
	of cross section- plastic, compact, semi-compact and slender, limiting width to		
	thickness ratio.Introduction to bolted and welded connections by LSM,		
2	Design of tension members with welded / bolted end connections using single		
	and double angle sections by LSM, design strength due to- yielding of gross		
	section, rupture of critical section and block shear.		
3	Design of compression members with welded / bolted end connections using	10	
	single and double angle by LSM, design strength, effective length of		
	compression members.		
	Design of columns with single and built-up sections, design of lacing and batten		

	plates with bolted and welded connections using LSM, column buckling curves, effective length, slenderness ratio, limiting values of effective slenderness ratio, buckling class of various cross sections.	
4	Design of slab base and gusseted base using bolted and welded connection by LSM, Effective area of a base plate.	06
5	Design of members subjected to bending by LSM, design strength in bending, effective length, laterally supported and unsupported beams.Design of single and built-up rolled steel sections using bolted and welded connections, shear lag effect. Design for shear, web buckling and web crippling, concept of web stiffners and different types of web stiffners. Introduction to plate girders.	08
6	Beam to beam and beam to column connections, design of framed, un-stiffened and stiffened seat connections.	04
7	Truss: Determinate truss, imposed load on sloping roof, wind load on sloping roof and vertical cladding including effect of permeability and wind drag, analysis of pin jointed trusses under various loading cases, computation of forces in members, design and detailing of connections and supports, wind bracing for roof system, supported on columns.	06
Torm wo	sulz.	

The Term work shall consist of a Design report and detailed drawings on two projects as indicated below:

i. Roofing system including details of supports.

Flooring system including Columns. ii.

The drawing should be drawn in pencil only on minimum of A-1 (imperial) size drawing sheets. Solution of at least 20 problems with neat sketches wherever necessary shall be submitted as term work.

Text Books:-

- 1. Dr Ramachandra (2010), "Design Of Steel Structures Vol. II", Scientific Publishers-Jodhpur, ISBN 8172336446
- 2. N. Subramanian (2008), "Design Of Steel Structures", Oxford, ISBN 0195676815, 864 pages
- 3. Pasala Dayaratnam (2014), "Design Of Steel Structures", S. Chand Publishing, ISBN 8121923204, 868 pages
- 4. S. S. Bhavikatti (2009), "Design of Steel Structures by Limit state mrthod as per IS 800:2007", I K International Pvt. Ltd, 414 pages
- 5. Duggal S K (2010), "Limit State Design of Steel Structures", Tata McGrwaHill
- 6. Shiyekar M R (2010), "Limit State Design of Steel Structures", PHI Learning
- 7. SaiRam K S (2010), "Design of Steel Structures", PHI Learning

Reference Books:-

- 1. Anand S. Arya, J.L. Ajmani (1977), "Design of Steel Structures", Nem Chand & Bros., India, ISBN 0861861671, 888 pages
- 2. B. C. Punmia, Ashok Kumar Jain (2006), "Comprehensive Design of Steel Structures", Laxmi Publications, ISBN 8170080932, 1156 pages
- 3. Edwin H. Gaylord, Charles N. Gaylord, James E. Stallmeyer (1991), "Design Of Steel Structures", Tata McGraw-Hill, ISBN 0070230544, 792 pages

- 4. T. J. Mac Ginley (1998), "Design Of Steel Structures", Spon Press ISBN 0419179305, 496 pages
- 5. William T. Segui (1996), "LRFD Steel Design", PWS Pub Co., ISBN 0534954782, 563 pages
- 6. James K. Nelson Jr., Jack C. McCormac (2002), "Structural Steel Design: LRFD Method", Prentice Hall, ISBN 0130479594, 713 pages
- 7. Charles G. Salmon, John E. Johnson, Faris A. Malhas (2008), "Steel Structures: Design and Behavior", Prentice Hall, ISBN 0131885561, 888 pages
- 8. Satinder Singh, Ic Syal (2007), "Design Of Steel Structures", Standard Publishers Distributors, ISBN 8186308646, 780 pages

Sr. No.	Examination	Module
1	T – I	1,2
2	T – II	3.4
3	Final exam	1 to 7

Class:-T. Y. B. Tech. (Civil)	Semester VI		
CODE: CE353	Course:-Hydraulic Engineering- II		
Prerequisites	BTC229, BTC277, CE304		
Deried ner week	Lecture		04
(asch of 60 minutes)	Practical	02	
(each of oo minutes)	Tutorial	-	
		Hours	Marks
	In Semester	01	20 x 02
Sahama of Evolution	End Semester*	03	100
Scheme of Evaluation	Practical (MCQ)		25
	Term Work		25
	TOTAL		150

*60% Weightage for end semester

Course Objectives:

- 1. To describe the laminar flow, turbulent flow in pipe and boundary layer theory.
- 2. To discuss the development of drag and lift forces acting on submerged bodies, airfoils, circular and cylindrical body.
- 3. To summarize the uniform and non uniform flow applied to open channel flow.
- 4. To explain dimensional analysis techniques.

Course Outcomes:

At the end of this course, students will be able to:

- 1. Carry out estimation of boundary layer thickness, drag forces acting on flat and curved surfaces along with the principle behind boundary layer separation.
- 2. Design hydraulically efficient open channels.
- 3. Appraise GVF and RVF in the formation of hydraulic jump in open channels.
- 4. Solve the forces exerted by flowing fluid on stationery bodies, lift forces on airfoils as well as circular cylinder.
- 5. Test the dimensional homogeneity in hydraulic engineering.

Module No	Details	Hr s
1	Turbulent Flow through pipes:	08
	Causes of turbulence, instability, mechanism of turbulence, Reynold's stresses,	
	semi-empirical theories of turbulence, Prandtl's mixing length theory, Universal	
	velocity distribution equation, Resistance equation, and Moody's diagram.	
2	Boundary Layer Theory:	08
	Development of boundary layer over flat plate and curved surfaces, laminar and	
	turbulent boundary layer, boundary layer thickness, displacement thickness,	
	momentum thickness, energy thickness, drag forces on flat plate due to boundary	
	layer, boundary layer separation and control.	
	Flow around submerged bodies:	06
3	Force exerted by flowing fluid on stationary body, drag and lift, terminal velocity	
	of body, development of lift on a circular cylinder, development of lift on an airfoil.	
4	Uniform Flow through open Channels:	08
	Classification, Uniform flow, Chezy's and Manning's equation, Prismatic and non-	

	animatic channels hadren it allow finited channels and distribution in any	
	prismatic channels, hydraulically efficient channels, pressure distribution in open	
	channels.	
5	Applications of Bernoulli's Theorem:	04
	Open channels, Broad crested weir, Venturiflume, Ogee weir.	
6	Nonuniform flow through open channels:	06
	Specific energy and specific force diagrams, applications of specific energy,	
	momentum principle to open channels, Gradually varied flow, hydraulic jump,	
	waves and surges.	
7	Dimensional analysis:	
	Dimensional homogeneity, Buckingham's Π theorem, Rayleigh's method,	08
	Dimensionless groups, similitude, model studies, distorted and undistorted models.	

Practical Examination:-

Practical examination will be based on the experiments conducted.

List of experiments: (preferably six to be performed)

- 1. Chezy's roughness factor
- 2. Specific energy
- 3. Hydraulic Jump
- 4. Boundary layer
- 5. Calibration of Broad crested weir
- 6. Calibration of Venturiflume
- 7. Calibration of Ogee weir

Termwork:-

Report on experiments performed as detailed above, assignments including 10 problems shall be submitted as term work

The distribution of term work marks will be as follows:

Reports of experiments performed and assignments	:	15 marks
Attendance/Quiz	:	10 marks

Recommended Books:

- 1. Dr. P.N. Nodi (2009); "Hydraulics and Fluid Mechanics" Standard Book House ISBN-13: 978-8189401269. 250p
- 2. Dr. Jain A.K (2010); "Fluid Mechanics" Khanna Publishers. ISBN-13: 978-8174091949.
- 3. K Subramanya (2008); "Flow in Open Channels" 978-0070086951. 576p
- 4. Subramanaya K (2010); "Fluid mechanics & hydraulic Machines". McGraw Hill Education (India) Private Limited. ISBN-13: 978-0070699809.
- 5. Nagarathnam S. (1984); "Fluid Mechanics:" Khanna Publishers.637p.
- 6. B.C.Pumnia.(2009); "Irrigation and Water Power Engineering", Standard Publishers. ISBN-13: 9788131807637. 964p
- 7. S.K.Garg (2009); "Irrigation Engineering and Hydraulic Structures", Khanna Publishers. ISBN-13: 9788174090478. 1594p

Sr. No.	Examination	Module
1	T-1	Module 1 and 2
2	T-2	Module 3 and 4
3	Final Examination	Module 1 to 7

Class:-T. Y. B. Tech. (Civil)	Semester VI		
CODE: CE354	Course:-Transportation Engineering - II		
Prerequisites	CE305		
Period per week	Lecture		04
	Practical	02	
(each of 60 minutes)	Tutorial	-	
		Hours	Marks
	In Semester	01	20 X 02
Sahama of Evaluation	End Semester*	03	100
Scheme of Evaluation	Practical		25
	Laboratory Work (Journal)		25
	TOTAL		150

*60% Weightage for end semester

Course Objectives:

- 1. To Summarize brief History of roads in India, and classification of roads as per different plan.
- 2. To discuss geometric elements of Roads, Design and construction of Flexible as well as Rigid Pavements & its strengthening as per IRC guide lines.
- 3. To classify subgrade soil by various methods and Laboratory procedure for computing various properties.
- 4. To appraise various parameters for design of bridges.

Course Outcomes:

At the end of the course, the students will be able

- 1. To analyze and Design Geometric elements of different road types and able to Estimate length of different roads.
- 2. To implement the knowledge gained for Design of Flexible Pavements, Rigid Pavements and Bridges as per IRC guide line.
- 3. To execute construction and maintenance of Flexible and Rigid Pavements.

Module No	Details	Hrs
01	Highway Planing	04
	i Classification of roads, brief history of road developments in India, present status of roads in India	
	ii Highway alignment, basic requirement of ideal alignment, factors governing highway alignment	
	iii Highway location survey, map study, reconnaissance, topographic surveys,	

	highway alignment in hilly area drawing and report preparation	
	ingliway angliment in hiny area, arawing and report proparation	
02	 1. Geometric Design of Highway: i Terrain classification, vehicular characteristics, highway cross section elements, salient dimensions, clearances, width of carriage way, shoulders, medians, width of road way, right of way, camber and its profile. ii Design speed, sight distance, perception time, break reaction time, analysis of safe sight distance, analysis of overtaking sight distance, intersection sight distance. iii Horizontal curves: design of superelevation and its provisions, minimum radius of horizontal curves, widening of pavement, transition curves. ivGradients: different types, maximum, minimum, ruling and exceptional, grade compensation in curves, vertical curves: design factors, comfort and sight distance. v Introduction of geometric design software. 	12
	 2. Pavement Materials: i Subgrade materials: desirable properties, modulus of elasticity, modulus of subgrade reaction, classification of subgrade soils, importance of CBR. ii Subbase material: desirable properties, different tests on aggregate, requirement of aggregate for different types of pavements. iii Bituminous materials: types of bituminous material, test on bituminous material, desirable properties, grade of bitumen. 	
03	 Pavement Design: i Types of pavements, different method of pavement design, comparison of flexible and rigid pavements, design wheel load, equivalent single wheel load, equivalent wheel load factor. ii Flexible pavement design: GI method, IRC approach, Burmister's layers theory, introduction to AASHTO method. iii Stress in Rigid Pavements, critical load position, stress due to load, stress due to temperature variation, combine loading and temperature stress. iv Introduction to pavement design software, relationship between number of cumulative axle, strain value and elastic modulus of materials. 	08
04	 Highway Construction: i Modern equipment for road construction, construction of different types of roads: water bound macadam (WBM) road, different types of bituminous pavements, cement concrete pavement. ii Constructions of stabilized roads: different method of soil stabilization, use of geotextile and geogrid in highway subgrade. 	05
05	 1. Highway Maintenance and Rehabilitation Pavement failure: flexible pavement failure, rigid pavement failure, maintenance of different types of pavements. Evaluation of pavements: structural evaluation of pavements, functional evaluation of pavement. Strengthening of existing pavement: objective of strengthening, types of overlay, different types of overlay, design of overlay using Benkeleman beam method. Highway drainage, necessacity, surface drainage, subsurface drainage. 	06
06	Traffic Engineering and Control iTraffic study and surveys: speed studies, presentation of data, journey time and delay studies, use of various methods, merits and demerits. iiVehicular volume count: types, various available methods, planning of traffic count.	08

	 iiiO- D survey, need and uses, various available methods. ivParking survey, need and types, traffic sign and marking, signals, miscellaneous traffic control aids, traffic regulations, traffic signals. vIntersection types: at grade and grade separation, factors influencing design. 	
07	Bridge Engineering Bridge engineering: importance, investigations, site selection, collection of data, determination of flood discharge, waterway, afflux, economic span, scour depthPier, abutment, Bearing	04

List of Experiments:- (At least six to be performed)

- 1. Impact test on aggregates
- 2. Abrasion test on aggregates
- 3. Crushing test on aggregates
- 4. Shape test on aggregates
- 5. Penetration test on bitumen
- 6. Ductility test on bitumen
- 7. Softening point test on bitumen
- 8. Viscosity test on bitumen

Term Work:

A report on traffic volume and speed studies, report of experiments performed and at least 10 assignments (including numerical problems and layout sketches) shall be submitted as term work.

The distribution of term work marks will be as follows:

Reports of experiments performed and assignments	:	15 marks
Attendance/Quiz	:	10 marks

Recommended Books:

- 1. Yoder, E. J., John (1975); "Principles of Pavement Design" Wiley & Sons, Inc., New York. ISBN -13: 9780471977803. 711p.
- 2. Khanna & Justo (1971); "Highway Engineering", New Chand & Brothers, Roorkee.678p.
- 3. Dr. L. R. Kadiyali and Dr. N. B. Lal (2005); "Principles and Practices of Highway Engineering", Khanna Publication, New Delhi. ISBN-13: 9788174091659. 835p.
- 4. L.R. Kadiyali (1983) "Traffic engineering and Transport Planning", Khanna publishers Delhi.860p.
- 5. Raju N. K (1988)"Design of Bridges:"Oxford & IDH.ISBN-13: 9788120417410
- 6. Guide lines for the Design of Flexible Pavements, IRC:37 -2001, IRC:37-2012,
- 7. Guide lines for the Design of Flexible Pavements for Low Volume Rural Roads, IRC: SP: 72-2007.
- 8. Concrete Roads: HMSO, Road Research Laboratory, London.

Sr. No.	Examination	Module
1	T – I	Module 1 and 2
2	T – II	Module 3 and 4
3	Final Examination	Module 1 to 7

Class:-T. Y. B. Tech. (Civil)	Semester VI		
CODE: CE355	Course:-Environmental Engineering - I		
Prerequisites	BT106, BT156, BT206, BT256, CE302		
Period per week	Lecture	0.	3
	Practical	02	
(each of oo minutes)	Tutorial	-	
		Hours	Marks
	In Semester	01	20 X 02
Scheme of Evoluction	End Semester*	Semester* 03	100
Scheme of Evaluation	Practical		
	Laboratory Work (Journal)		25
	TOTAL		125

*60% Weightage for end semester

Course Objectives:

The students will learn to

- 1. Prepare a general layout of a water supply scheme and discuss the components of the water treatment plant on the basis of topography and source
- 2. Design various units of water treatment system
- 3. Understand and deliberate on ecological system and importance of natural resources to the nation
- 4. Apply fundamental knowledge about air pollution, land pollution, water pollution and noise pollution

Course Outcomes:

The course will enable the students to

- 1. Analyse and interpret the data leading to pollution by performing practicals
- 2. Demonstrate their capability for designing water supply scheme for rural and urban areas.
- 3. Design all water treatment units such as flocculator, sedimentation tank, filtration, ion exchange units
- 4. Evaluate and understand various eco-friendly technologies to facilitate conservation and regeneration of the natural resources.

Module No	Details	Hrs
1.	Ecology:	04
	Basic principles, food chain, food webs and ecological pyramids, tropic structure gross production to total community, respiration ratio(p/r), biochemical cycles, limiting factors-Liebig's law, extended ecological resulting important ecocycles are shored.	
	streams & rivers lakes & ponds	
	Sucaris & Tivers, Takes & ponds	06
Ζ.	Environmental Pollution:	00
	Definition, different types of pollutions such as water pollution, air pollution, noise pollution, thermal pollution, soil pollution, marine pollution, nuclear hazards in brief.	
	i. Water Pollution:	
	Water pollutants: oxygen demanding wastes, pathogens, nutrients, salts	

	thermal pollution, heavy metals, pesticides, volatile organic compounds.		
	Surface water quality, water quality in lakes, rivers and ground water.		
	ii Noise Pollution:		
	Basic concepts, measurement, standards, effects on human health, and		
	various control methods.		
3.	Water Engineering – Quality and Quantity of Water	06	
	i. Water supply systems: need for planned water supply schemes,		
	components of water supply system and determination of their design		
	capacities, distribution system of water, types of intake structure.		
	ii. Quality of water: wholesomeness and palatability, physical, chemical,		
	bacteriological standards.		
4	Water Engineering – Treatment of Water supplies	03	
	i. Treatment of water; impurities in water-processes for their removal-		
	typical flow –sheets.		
5.	Water Engineering – Basic treatment of water supplies	12	
	i. Sedimentation: factors affecting efficiency, design values of various		
	parameters, tube settlers.		
	ii. Coagulation and flocculation: mechanisms, common coagulations,		
	rapid mixing and flocculating devices, G and GT values, Jar test,		
	coagulant aids- polyelectrolyte etc.		
	iii. Filtration: classification, slow and rapid sand filters, dual media filters,		
	sand, gravel and under-drainage system, mode of action, cleaning,		
	limitations, operational difficulties, performance, basic design		
	consideration, pressure filters: construction and operation.		
	iv. Disinfection: chlorination, chemistry of chlorination, kinetics of		
	disinfection, chlorine demand, free and combined chlorine, break point		
	chlorination, superchlorination, dechlorination, chlorine residual, use		
	of iodine, ozone, ultraviolet rays and chlorine dioxide as disinfectants,		
	well water disinfection		
6.	Advanced treatment of water supplies	04	
	i. Water softening: lime soda and base exchange methods, principle		
	reactions, design considerations, sludge disposal.		
	ii. Miscellaneous treatments: removal of iron and manganese, taste, odour		
	and colour, principles and methods, de-fluoridation, reverse osmosis.		
7.	Municipal solid waste management:	08	
	i. Solid Waste: Sources, types, composition, physical and biological		
	properties of solid wastes ,sources and types of hazardous and		
	infectious wastes in municipal solid wastes		
	ii. Solid waste generation and collection, storage, handling transportation,		
	processing.		
	111. Treatment and disposal methods:		
	1v. Material separation & recycle, physico-chemical and biological		
	stabilization and solidification thermal methods, land disposal, site		
	remediation, leachate and its control		
	v. Hazardous wastes:		
	vi. Definition, identification, mutagenesis, carcinogesis, toxicity testing,		
.	human studies, lot of evidence categories for potential carcinogens.		
List of e	xperiments:-		
1. I	Determination of pH in water.		

- 2. Determination of Hardness of water.
- 3. Determination of Turbidity of water.
- 4. Determination of Optimum dose of coagulant by using Jar Test Apparatus.
- 5. Determination of Residual chlorine from water
- 6. Determination of Most probable number
- 7. Solid waste: Determination of pH
- 8. Solid waste: Determination of moisture content
- 9. Solid Waste : Organic content of solid waste
- 10. Measurement of Noise Level

Term Work:

Report of experiments performed and assignments (including numerical problems and layout sketches) shall be submitted as term work.

The distribution of term work marks will be as follows:

Reports of experiments performed and assignments

no performed and assi

15 marks 10 marks

:

:

Recommended Books:-

Attendance/Quiz

- 1. S.K.Hussain (1976); "Water Supply and Sanitary Engineering", Oxford & IBH Publication, New Delhi. ISBN-13- 9788120401341. 884p.
- 2. E.W.Steel (1947); "Water Supply & Sewage", McGraw Hill, New York. ASIN: B001SL037A
- 3. T.J.McGhee (1991); "Water Supply & Sewage" McGraw Hill, New York. ISBN-13-9780071008235. 602p.
- 4. Nathanson J.A (2014) "Basic Environmental Technology: Water Supply, Waste Management and Pollution Control". Prentice Hall. ISBN-13: 978-0132840149. 456p.
- 5. J.W. Clark, W.Veisman, M.J.Hammer (2008); "Water Supply and Pollution Control" Prentice Hall. ISBN-13: 978-0132337175. 864p.
- 6. Gilbert Masters (2013); "Introduction to Environmental Engineering and Science" Pearson Education. ISBN 13 9781292025759. 700p.
- 7. S.K. Garg (2010); "Water Supply Engineering", Khanna Publications. ISBN 13: 978-8174091208. 300p.
- 8. Vesilind (2013);⁷ "Introduction to Environmental Engineering", PWS Publishing Company. ISBN 13: 9780534378127.
- 9. Peavy, Rowe, Tchobanoglous (2013); "Environmental Engineering", Tata Mc Graw Hill. ISBN-13: 978-9351340263. 736p.
- 10. Eugene P. Odum (); "Fundamentals of Ecology", Nataraj Publications. ISBN-13: 978-0534420666. 624p.
- 11. Tchobanoglous. Theissen &Vigil (); "Integrated Solid Waste Management" Tata Mc Graw Hill Publication. ISBN-13: 978-0070632370. 992p.
- 12. Manual on Water Supply and Treatment, (latest Ed.): Ministry of & Housing. New Delhi
- 13. Manual on municipal Solid waste Management: Ministry of Urban Development, New Delhi
- 14. Relevant Indian Standard Specifications, BIS Publications
- 15. CPHEEO Manual on Water Supply & Treatment CPHEEO Manual on Sewage & Treatment

Sr. No.	Examination	Module
1	T – I	1, 2,3
2	T – II	4 and 5
3	Final Examination	1 to 7

Class:-T. Y. B. Tech. (Civil)	Sei	mester VI	
CODE: CE356	Course:-Theory of Reinf	orced and Prest	tressed Concrete
Prerequisites	ВТС230,	BTC278, CE30	1
Daried ner week	Lecture		04
(asch of 60 minutes)	Practical	-	
(each of oo minutes)	Tutorial	02	
		Hours	Marks
	In Semester	01	20 X 02
Sahama of Evaluation	End Semester*	03	100
Scheme of Evaluation	Practical		
	Laboratory Work (Journal)		25
	TOTAL		125

*60% Weightage for end semester

Course Objectives:

1. To impart understanding for design of basic RCC structures (beams, columns & slabs) with the help of knowledge of structural analysis.

2. To understand the concept of Prestressed Concrete along with analysis and its design

Course Outcomes:

1. Designing basic structural members like beam, column and slab by Working stress Method 2. Realizing the importance of Prestressed reinforced concrete its application, advantages and disadvantages as compared to that of RCC .

Module No	Details	Hrs
1.	Concept of reinforced concrete, working stress method of design for reinforced	02
	concrete, permissible stresses as per IS-456-2000, stress strain curve of concrete	
	and steel, characteristics of concrete and steel reinforcement.	
2.	Analysis and design of singly reinforced and doubly reinforced rectangular, Tee,	13
	Ell-beams for flexure by WSM, balanced, under reinforced and over reinforced	
	sections. Design for shear and bond by WSM.	
3.	Design of one way and two way slab by WSM Analysis and Design of rectangular	10
	and circular columns subjected to axial and bending by WSM.	
4.	Prestressed Concrete: Basic principles of prestressed concrete, materials used and	06
	their properties, methods and systems of pre stressing,	
5.	Losses in pre stress, analysis of various types of sections subjected to prestress and	05
6.	General design principles: Concepts of centre of compression, kern of a section,	09
	efficiency of the section, pressure line and safe cable zone, principal tension in	
	prestressed concrete members.	
7.	Simple Design of prestressed concrete beams (no end block design)	03

Term work

Solution of at least 20 problems with neat sketches wherever necessary shall be submitted as term work.

Text Books:-

- 1. S N Sinha (2002),"Reinforced Concrete Design, Second Revised Edition", Tata McGraw-Hill Education, ISBN 0070473323, 708 pages
- 2. Dr. H. J .Shah (2008), "Reinforced Concrete, Volume 2", Charotar Publishing House Pvt. Limited, ISBN 8185594732, 536 pages
- 3. A.K. Goel & I. C. Syal (2007)," Reinforced Concrete Structures", S. Chand Publishing ISBN 8121923530, 826 pages
- 4. N. Krishna Raju (2006)," Prestressed concrete" Tata McGraw-Hill Education, ISBN: 0070634440, 363 pages
- 5. P. Dayaratnam, (2011)," Design of Reinforced Concrete Structures", Oxford & Ibh-Pubs Company-New Delhi, ISBN 8120414195
- 6. Sinha N C, Roy S K (2007), "Fundamentals of Reinforced Concrete", S. Chand Publishing
- 7. Pillai & Menon (2009), "Reinforced Concrete Design", Tata McGraw-Hill Education

Reference Books:-

- 1. Warner. R. F. Rangan B. C. & Hall A. S (1977)," Reinforced Concrete", Pitman, ISBN 0858968219
- 2. T. Y. B. TECH. Lin, A. P. Burns (1981)," Design of Prestressed Concrete Structures ", John Wiley & Sons, ISBN 0471018988, 656 pages.

Sr. No.	Examination	Module
1	T – I	1,2
2	T – II	3,4
3	Final Examination	1 to 7